
TPCT’s

College of Engineering, Osmanabad.

Laboratory Manual

Of

Computer Graphics

For

Second Year Students

Dept. of Computer Science & Engineering

Manual Prepared by

Prof. Bhosale A.U.

Author COE ,Osmanabad

APHICSPndcndjnjdAuthAAAzxxorvndjdnpoiuopppPPregthjcdjcnjdjhfhrihfhjfioefurgnvf

fdgfgnvbmnmjkjiuiuiljkjlklkjlkl;

 TPCT’s

 College of Engineering

Solapur Road, Osmanabad
Department of Computer Science & Engg.

 Vision of the Department:

To achieve and evolve as a center of academic excellence and research center in the field of

Computer Science & Engineering. To develop computer engineers with necessary analytical

ability & human values who can creatively design, implement a wide spectrum of computer

system for welfare of the society.

Mission of the Department:

The department strives to continuously engage in providing the student with in-depth

understanding of fundamentals and practical training related to professional skills & their

application through effective Teaching-Learning Process and state of the art laboratories

pertaining to CSE and interdisciplinary areas. Preparing students in developing research,

design, entrepreneurial skills and employability capabilities.

College of Engineering

Technical Document

This technical document is a series of Laboratory manuals of Computer Science & Engg.

Department and is a certified document of College of Engineering, Osmanabad. The care has

been taken to make the document error-free. But still if any error is found. Kindly bring it to the

notice of subject teacher and HOD

Recommended by,

HOD

Approved by,

Principal

FOREWORD

It is my great pleasure to present this laboratory manual for second year engineering students for

the subject of Computer Graphics Programming keeping in view the vast coverage required for

understanding the concept of Computer Graphics.

As a student, many of you may be wondering with some of the questions in your mind regarding

the subject and exactly what has been tried is to answer through this manual.

Faculty members are also advised that covering these aspects in initial stage itself, will greatly

relived them in future as much of the load will be taken care by the enthusiasm energies of the

students once they are conceptually clear.

 HOD

 CSE DEPT

LABORATORY MANUAL CONTENTS

This manual is intended for the Second year students of Computer Science & Engineering in the

subject of Computer Graphics. This manual typically contains practical/Lab Sessions related

Computer Graphics programming covering various aspects related the subject to enhanced

understanding.

Computer Graphics Programming provides students the idea of how to write programs to

generate images. It also helps to understand the concepts of OpenGL programming along with

the use of various functions.

Students are advised to thoroughly go through this manual rather than only topics mentioned in

the syllabus as practical aspects are the key to understanding and conceptual visualization of

theoretical aspects covered in the books.

Prof. A.U.Bhosale

Subject In-charge

SUBJECT INDEX

1. Do’s & Don’ts in Laboratory.

2. Lab Exercises

3. Quiz

4. Conduction of viva voce examination

5. Evaluation & marking scheme

1. Dos and Don’ts in Laboratory:

1. Make entry in the Log Book as soon as you enter the Laboratory. All the students should

sit according to their roll numbers starting from their left to right.

2. All the students are supposed to enter the terminal number in the log book.

3. Do not change the terminal on which you are working.

4. All the students are expected to get at least the algorithm of the program/concept to be

implemented.

5. Strictly observe the instructions given by the teacher/Lab Instructor.

Instruction for Laboratory Teachers:-

1. Submission related to whatever lab work has been completed should be done during the next

lab session.

2. Students should be taught for taking the printouts under the observation of lab teacher.

3. The promptness of submission should be encouraged by way of marking and evaluation

patterns that will benefit the sincere students.

2. List of Experiment

Setting the VC++ environment for OpenGL

1 A: Introduction to OpenGL

 Objectives.

 What is OpenGL and how does it work.

 OpenGL Architecture

 OpenGL as a Renderer

 OpenGL and Related APIs

1 B: GLUT (Graphics Language Utility Toolkit)

 Introduction

 Design Philosophy

 Library installation.

 OpenGL conventions

 Basic OpenGL Syntax.

 OpenGL Related Libraries.

 Display-Window Management.

 Writing a simple displaying function.

 Writing a complete simple OpenGL program.

1 C: Study & implement of basic graphics function defined in graphics.h

2 A : Study of graphics standards

 CORE

 GKS (Graphics Kernel System)

 GKS-3D(Graphics Kernel System -3 Dimensions)

 PHIGS (Programmer's Hierarchical Interactive Graphics Systems)

 CGM (Computer Graphics Metafile)

 CGI (Computer Graphics Interface).

2 B: Program for Line drawing using DDA algorithm .

3 : Program for Line drawing using Bresenhams algorithm.

4 : Program for Mid-Point Circle Generation algorithm .

5 : Drawing Basic Graphics Primitive

 Drawing Points

 Drawing Lines

 Drawing Polygons

 Set-up Gradient Colors

6 : Interactive program using Keyboard /Mouse in OpenGL.

7 : Interactive program using Menu/Submenu in OpenGL.

8 : Program using 2D Transformations.

 Creating Menu

 Rotation, Scale and Translation

9 : Window to Viewport transformations in C.

10: Program for Cohen Sutherland Line Clipping Algorithm.

11 : Program for polygon filling using flood fill method.

12 : Design an application in OpenGL.

Setting up the VC++ environment for Open GL.

To install Microsoft Visual Studio 10.0 follow the steps for installation as given here.

1. Insert CD containing setup file for Microsoft Visual Studio 10.0

2. Run setup file and wizard like this will appear.

3. Accept the terms and conditions and click on next

4. Select the features as Full and click on install button.

5. After successful installation, click on finish button.

Lab Exercise 1: A

Title- Introduction to OpenGL

Objective: To understand what is OpenGL and how to install it on windows platform.

Theory:

A. What is OpenGL?

It is a window system independent, operating system independent graphics rendering API which

is capable of rendering high-quality color images composed of geometric and image primitives.

OpenGL is a library for doing computer graphics. By using it, you can create interactive

applications which render high-quality color images composed of 3D geometric objects and

images.

As a software interface for graphics hardware, OpenGL's main purpose is to render two and three

dimensional objects into a frame buffer. These objects are described as sequences of vertices

(which define geometric objects) or pixels (which define images). OpenGL performs several

processing steps on this data to convert it to pixels to form the final desired image in the frame

buffer.

As OpenGL is window and operating system independent. As such, the part of your application

which does rendering is platform independent. However, in order for OpenGL to be able to

render, it needs a window to draw into. Generally, this is controlled by the windowing system on

whatever platform you’re working on. Summarizing the above discussion, we can say OpenGL

is a software API to graphics hardware.

OpenGL Architecture

This important diagram represents the flow of graphical information, as it is processed from CPU

to the frame buffer. There are two pipelines of data flow. The upper pipeline is for geometric,

vertex-based primitives. The lower pipeline is for pixel-based, image primitives. Texturing

combines the two types of primitives together.

OpenGL as a Renderer

OpenGL is a library for rendering computer graphics. Generally, there are two operations that

you do with OpenGL:

• draw something

• change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives and image primitives.

Geometric primitives are points, lines and polygons. Image primitives are bitmaps and graphics

images (i.e. the pixels that you might extract from a JPEG image after you’ve read it into your

program.) Additionally, OpenGL links image and geometric primitives together using texture

mapping, which is an advanced topic .

Lab Exercise 1: B

Title: To study GLUT (OpenGL Utility Toolkit)

Objective: To study OpenGL library Organization

Theory:

GLUT (pronounced like the glut in gluttony) is the OpenGL Utility Toolkit, a window system

independent toolkit for writing OpenGL programs. It implements a simple windowing

application programming interface (API) for OpenGL. GLUT makes it considerably easier to

learn about and explore OpenGL programming. GLUT provides a portable API so you can write

a single OpenGL program that works across all PC and workstation OS platforms.

GLUT is designed for constructing small to medium sized OpenGL programs. While GLUT is

well-suited to learning OpenGL and developing simple OpenGL applications, GLUT is not a

full-featured toolkit so large applications requiring sophisticated user interfaces are better off

using native window system toolkits. GLUT is simple, easy, and small.

The GLUT library has C, C++ (same as C), FORTRAN, and Ada programming bindings.

Fig OpenGL Library Organization

The GLUT source code distribution is portable to nearly all OpenGL implementations and

platforms. The current version is 3.7. Additional releases of the library are not anticipated.

GLUT is not open source. Mark Kilgard maintains the copyright. There are a number of newer

and open source alternatives.

The toolkit supports:

 Multiple windows for OpenGL rendering

 Callback driven event processing

 Sophisticated input devices

 An 'idle' routine and timers

 A simple, cascading pop-up menu facility

 Utility routines to generate various solid and wire frame objects

 Support for bitmap and stroke fonts

Design Philosophy

GLUT simplifies the implementation of programs using OpenGL rendering. The GLUT

application programming interface (API) requires very few routines to display a graphics scene

rendered using OpenGL. The GLUT API (like the OpenGL API) is stateful.

Most initial GLUT state is defined and the initial state is reasonable for simple programs. The

GLUT routines also take relatively few parameters. No pointers are returned. The only pointers

passed into GLUT are pointers to character strings (all strings passed to GLUT are copied, not

referenced) and opaque font handles.

More subtle window system dependencies such as reliance on window system dependent fonts

are avoided by GLUT; instead, GLUT supplies its own (limited) set of fonts. For programming

ease, GLUT provides a simple menu sub-API. While the menuing support is designed to be

implemented as pop-up menus, GLUT gives window system leeway to support the menu

functionality in another manner (pull-down menus for example).

Two of the most important pieces of GLUT state are the current window and current menu.

Most window and menu routines affect the current window or menu respectively. Most callbacks

implicitly set the current window and menu to the appropriate window or menu responsible for

the callback.

GLUT contains routines for rendering fonts and geometric objects, however GLUT makes no

claims on the OpenGL display list name space. For this reason, none of the GLUT rendering

routines uses OpenGL display lists. It is up to the GLUT programmer to compile the output from

GLUT rendering routines into display lists if this is desired.

Installing OpenGL Libraries

Installation of OpenGL differs from operating system to another and from compiler to another,

because each system like Linux, Win, or Mac has different way of sorting system files, the same

issue with compilers, but since we are using Microsoft Visual Studio 2010 C++ then we are only

going to demonstrate how to install OpenGL on Windows system.

To install the OpenGL library all you have to do are the following steps:

Get the OpenGL library or the OpenGL Utility Toolkit Library files, and you can find GLUT on

the following links:

a. http://www.xmission/~nate/glut/glut-3.7.6-bin.zip

b. http://www.sultan-eid.com/files/glut-3.7.6-bin.rar

NOTE: Including the glut library will also provide the main GL functions which means you don't

have to include the both libraries, you can only include the GLUT and the program will

successfully works.

By extracting the compressed files you will find the following:

a. glut32.dll.

b. glut32.lib

c. glut.h

d. README-win32.

In order to write a Visual C++ application using GLUT you'll need three files:

· glut.h - This is the file you'll have to include in your source code. The common place to put this

file is in the gl folder which should be inside the include folder of your system.

· glut.lib (SGI version for Windows) and glut32.lib (Microsoft's version) - This file must be

linked to your application so make sure to put it your lib folder.

· glut32.dll (Windows) and glut.dll (SGI version for Windows) - choose one according to the

OpenGL you're using. If using Microsoft's version then you must choose glut32.dll. You should

place the dll file in your system folder.

To get the above mentioned files in the correct location, copy each file to the following indicated

folder:

· glut32.dll -> c: /windows/system32

· glut32.lib -> c:/program files/Microsoft visual 2010 /VC/Lib

· glut.h -> c:/program files/Microsoft visual 2010/VC/include/gl

It's important to consider that we are working on Microsoft Visual Studio 98 using C++, in case

you are using different compiler or different version of Microsoft Visual Studio, the installation

will take different paths.

Now you've completely installed OpenGL library into your machine and you are ready to go and

start programming using different graphical functions. In order to write applications with GLUT

you should have the latest version. The GLUT distribution comes with lots and lots of examples.

But let’s take a look at the syntax of OpenGL functions.

OpenGL: Conventions

Here’s the basic structure that we’ll be using in our applications. This is generally what you’d do

in your own OpenGL applications.

The steps are:

1) Choose the type of window that you need for your application and initialize it.

2) Initialize any OpenGL state that you don’t need to change every frame of your program. This

might include things like the background color, light positions and texture maps.

3) Register the callback functions that you’ll need. Callbacks are routines you write that GLUT

calls when a certain sequence of events occurs, like the window needing to be refreshed, or the

user moving the mouse. The most important callback function is the one to render your scene,

which we’ll discuss in a few slides.

4) Enter the main event processing loop. This is where your application receives events, and

schedules when callback functions are called.

GLUT window and screen coordinates are expressed in pixels. The upper left hand corner of the

screen or a window is (0, 0). X coordinates increase in a rightward direction; Y coordinates

increase in a downward direction.

Integer identifiers in GLUT begin with one, not zero. So window identifiers, menu identifiers,

and menu item indexes are based from one, not zero. The functions in OpenGL always start with

a specific prefix which is "gl" and a capitalized first character of each word in the name of

function syntax, which indicates that this function belongs to the OpenGL library.

In GLUT's ANSI C binding, for most routines, basic types (int, char*) are used as parameters. In

routines where the parameters are directly passed to OpenGL routines, OpenGL types GLfloat

and GLint are used. The header files for GLUT should be included in GLUT programs with the

following include directive:

#include <GL/glut.h>

Because a very large window system software vendor (who will remain nameless) has an

apparent inability to appreciate that OpenGL's API is independent of their window system API,

portable ANSI C GLUT programs should not directly include <GL/gl.h> or <GL/glu.h>. Instead,

ANSI C GLUT programs should rely on <GL/glut.h> to include the necessary OpenGL and GLU

related header files.

GLUT programs need to link with the system's OpenGL and GLUT libraries (and any libraries

these libraries potentially depend on). A set of window system dependent libraries may also be

necessary for linking GLUT programs. For example, programs using the X11 GLUT

implementation typically need to link with Xlib, the X extension library, possibly the X Input

extension library, the X miscellaneous utilities library, and the math library.

Examples on OpenGL function formats:

Functions have prefix gl and initial capital letters for each word

glClearColor (), glEnable(), glPushMatrix () …

OpenGL data types

GLfloat, GLdouble, GLint, GLenum, …

glutInit

glutInit is used to initialize the GLUT library.

Usage

void glutInit(int *argc, char **argv);

argc

A pointer to the program's unmodified argc variable from main. Upon return, the value pointed

to by argc will be updated, because glutInit extracts any command line options intended for the

GLUT library.

argv

The program's unmodified argv variable from main. Like argc, the data for argv will be updated

because glutInit extracts any command line options understood by the GLUT library.

Description

glutInit will initialize the GLUT library and negotiate a session with the window system.

During this process, glutInit may cause the termination of the GLUT program with an error

message to the user if GLUT cannot be properly initialized. Examples of this situation include

the failure to connect to the window system, the lack of window system support for OpenGL,

and invalid command line options.

glutInit also processes command line options, but the specific options parse are window system

dependent.

glutInitWindowPosition, glutInitWindowSize

glutInitWindowPosition and glutInitWindowSize set the initial window position and size

respectively.

Usage

void glutInitWindowSize(int width, int height);

void glutInitWindowPosition(int x, int y);

width

Width in pixels.

height

Height in pixels.

x

Window X location in pixels.

y

Window Y location in pixels.

Description

Windows created by glutCreateWindow will be requested to be created with the current

initial window position and size.

GlutInitDisplayMode

glutInitDisplayMode sets the initial display mode.

Sample OpenGL Program:

/* This program draws a white rectangle on a black background.*/

#include <glut.h> /* glut.h includes gl.h and glu.h*/

void display()

{

glClear(GL_COLOR_BUFFER_BIT); /* clear window */

glBegin(GL_POLYGON); /* draw unit square polygon */

glVertex2f(-0.5, -0.5);

glVertex2f(-0.5, 0.5);

glVertex2f(0.5, 0.5);

glVertex2f(0.5, -0.5);

glEnd();

glFlush(); /* flush GL buffers */

}

void init() // initialize colors

{

glClearColor(0.0, 0.0, 0.0, 0.0); /* set clear color to black */

glColor3f(1.0, 1.0, 1.0); /* set fill color to white */

}

void main(int argc, char** argv)

{

/* Initialize mode */ /* Window title is name of program (arg[0]) */

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); //set color model

glutInitWindowSize(500, 500); // Set window Size

glutInitWindowPosition(0, 0); //Set Window Position upper left corner of screen

glutCreateWindow("simple"); //Create Window and Set title

glutDisplayFunc(display); //Call the Displaying function

init(); //Initialize Drawing Colors

glutMainLoop(); //Keep displaying until program is closed.

}

Output:

Conclusion: Thus we have studied about OpenGL and how it is used to draw graphics.

Lab Exercise 1: C

Tital: Study & implement of basic graphics function defined in graphics.h

Objective : Study of Graphics Functions.

Theory :

Arc function in c

Declaration: void arc(int x, int y, int stangle, int endangle, int radius);

arc function is used to draw an arc with center (x,y) and stangle specifies starting angle, endangle

specifies the end angle and last parameter specifies the radius of the arc. arc function can also be

used to draw a circle but for that starting angle and end angle should be 0 and 360 respectively.

C programming source code for arc

#include <graphics.h>

#include <conio.h>

main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 arc(100, 100, 0, 135, 50);

 getch();

 closegraph();

 return 0;

}

Bar function in c

1. In the above program (100,100) are coordinates of center of arc, 0 is the starting angle, 135

is the end angle and 50 specifies the radius of the arc.

Declaration: void bar(int left, int top, int right, int bottom);

Bar function is used to draw a 2-dimensional, rectangular filled in bar . Coordinates of

left top and right bottom corner are required to draw the bar. Left specifies the X-

coordinate of top left corner, top specifies the Y-coordinate of top left corner, right

specifies the X-coordinate of right bottom corner, bottom specifies the Y-coordinate of

right bottom corner. Current fill pattern and fill color is used to fill the bar. To change fill

pattern and fill color use setfillstyle.

https://www.programmingsimplified.com/c/graphics.h/setfillstyle

2. C programming code

3. #include <graphics.h>

4. #include <conio.h>

5.

6. main()

7. {

8. int gd = DETECT, gm;

9.

10. initgraph(&gd, &gm, "C:\\TC\\BGI");

11.
12. bar(100, 100, 200, 200);

13.
14. getch();

15. closegraph();

16. return 0;

17. }

18.

C program for cleardevice

Declaration: void cleardevice();

cleardevice function clears the screen in graphics mode and sets the current position to (0,0).

Clearing the screen consists of filling the screen with current background color.

C program for cleardevice

#include <graphics.h>

#include <conio.h>

main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 outtext("Press any key to clear the screen.");

 getch();

 cleardevice();

 outtext("Press any key to exit...");

 getch();

 closegraph();

 return 0;

}

Note : Don't use clrscr in graphics mode

C code of closegraph

closegraph function closes the graphics mode, deallocates all memory allocated by graphics

system and restores the screen to the mode it was in before you called initgraph.

Declaration: void closegraph();

C code of closegraph

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 outtext("Press any key to close the graphics mode...");

 getch();

 closegraph();

 return 0;

}

C program for drawpoly

Drawpoly function is used to draw polygons i.e. triangle, rectangle, pentagon, hexagon etc.

Declaration: void drawpoly(int num, int *polypoints);

num indicates (n+1) number of points where n is the number of vertices in a polygon, polypoints

points to a sequence of (n*2) integers . Each pair of integers gives x and y coordinates of a point

on the polygon. We specify (n+1) points as first point coordinates should be equal to (n+1)
th

 to

draw a complete figure.

To understand more clearly we will draw a triangle using drawpoly, consider for example,the

array :-

int points[] = { 320, 150, 420, 300, 250, 300, 320, 150};

points array contains coordinates of triangle which are (320, 150), (420, 300) and (250, 300).

Note that last point(320, 150) in array is same as first. See the program below and then its output,

it will further clear your understanding.

C program for drawpoly

#include <graphics.h>

#include <conio.h>

main()

{

 int gd=DETECT,gm,points[]={320,150,420,300,250,300,320,150};

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 drawpoly(4, points);

https://www.programmingsimplified.com/c/graphics.h/rectangle

 getch();

 closegraph();

 return 0;

}

Declarations of ellipse function :-

void ellipse(int x, int y, int stangle, int endangle, int xradius, int yradius);

Ellipse is used to draw an ellipse (x,y) are coordinates of center of the ellipse, stangle is the

starting angle, end angle is the ending angle, and fifth and sixth parameters specifies the X and Y

radius of the ellipse. To draw a complete ellipse strangles and end angle should be 0 and 360

respectively.

C programming code for ellipse

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 ellipse(100, 100, 0, 360, 50, 25);

 getch();

 closegraph();

 return 0;

}

Declaration of fillellipse function :-

void fillellipse(int x, int y, int xradius, int yradius);

x and y are coordinates of center of the ellipse, xradius and yradius are x and y radius of ellipse

respectively.

C program for fillellipse

#include <graphics.h>

#include <conio.h>

int main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 fillellipse(100, 100, 50, 25);

 getch();

 closegraph();

 return 0;

}

Fillpoly function draws and fills a polygon. It require same arguments as drawpoly.

Declaration: void drawpoly(int num, int *polypoints);

For details of arguments see drawpoly.

fillpoly fills using current fill pattern and color which can be changed using setfillstyle.

C programming code

#include <graphics.h>

#include <conio.h>

main()

{

 int gd=DETECT,gm,points[]={320,150,440,340,230,340,320,150};

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 fillpoly(4, points);

 getch();

 closegraph();

 return 0;

}

Declaration: void floodfill(int x, int y, int border);

floodfill function is used to fill an enclosed area. Current fill pattern and fill color is used to fill

the area.(x, y) is any point on the screen if (x,y) lies inside the area then inside will be filled

otherwise outside will be filled,border specifies the color of boundary of area. To change fill

pattern and fill color use setfillstyle. Code given below draws a circle and then fills it.

C programming code

#include <graphics.h>

#include <conio.h>

main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 setcolor(RED);

 circle(100,100,50);

 floodfill(100,100,RED);

 getch();

 closegraph();

 return 0;

}

https://www.programmingsimplified.com/c/graphics.h/drawpoly
https://www.programmingsimplified.com/c/graphics.h/drawpoly
https://www.programmingsimplified.com/c/graphics.h/setfillstyle

In the above program a circle is drawn in RED color. Point (100,100) lies inside the circle as it is

the center of circle, third argument to floodfill is RED which is color of boundary of circle. So

the output of above program will be a circle filled with WHITE color as it is the default fill color.

Declaration: void getarccoords(struct arccoordstype *var);

getarccoords function is used to get coordinates of arc which is drawn most recently.

arccoordstype is a predefined structure which is defined as follows:

struct arccoordstype

{

 int x, y; /* center point of arc */

 int xstart, ystart; /* start position */

 int xend, yend; /* end position */

};

address of a structure variable of type arccoordstype is passed to function getarccoords.

C program of getarccoords

#include<graphics.h>

#include<conio.h>

#include<stdio.h>

main()

{

 int gd = DETECT, gm;

 struct arccoordstype a;

 char arr[100];

 initgraph(&gd, &gm,"C:\\TC\\BGI");

 arc(250,200,0,90,100);

 getarccoords(&a);

 sprintf(arr,"(%d, %d)",a.xstart,a.ystart);

 outtextxy(360,195,arr);

 sprintf(arr,"(%d, %d)",a.xend,a.yend);

 outtextxy(245,85,arr);

 getch();

 closegraph();

 return 0;

}

In the above program we have drawn an arc and then we get the coordinates of end points of arc

using getarccoords.Coordinates so obtained are displayed using outtextxy.

getbkcolor function returns the current background color

Declaration : int getbkcolor();

e.g. color = getbkcolor(); // color is an int variable

if current background color is GREEN then color will be 2.

C program for getbkcolor

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm, bkcolor;

 char a[100];

 initgraph(&gd,&gm,"C:\\TC\\BGI");

 bkcolor = getbkcolor();

 sprintf(a,"Current background color = %d", bkcolor);

 outtextxy(10, 10, a);

 getch();

 closegraph();

 return 0;

}

getdrivername function returns a pointer to the current graphics driver.

C program for getdrivername

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm;

 char *drivername;

 initgraph(&gd, &gm, "C:\\TC\\BGI");

 drivername = getdrivername();

 outtextxy(200, 200, drivername);

 getch();

 closegraph();

 return 0;

}

getimage function saves a bit image of specified region into memory, region can be any

rectangle.

Declaration:- void getimage(int left, int top, int right, int bottom, void *bitmap);

getimage copies an image from screen to memory. Left, top, right, and bottom define the area of

the screen from which the rectangle is to be copied, bitmap points to the area in memory where

the bit image is stored.

Smiling face animation program using getimage.

getmaxcolor function returns maximum color value for current graphics mode and driver. Total

number of colors available for current graphics mode and driver are (getmaxcolor() + 1) as

color numbering starts from zero.

Declaration: int getmaxcolor();

C program of getmaxcolor

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm, max_colors;

 char a[100];

 initgraph(&gd,&gm,"C:\\TC\\BGI");

 max_colors = getmaxcolor();

 sprintf(a,"Maximum number of colors for current graphics mode and driver =

%d",max_colors+1);

 outtextxy(0, 40, a);

 getch();

 closegraph();

 return 0;

}

getmaxy function returns the maximum Y coordinate for current graphics mode and driver.

Declaration: int getmaxy();

C program for getmaxy

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm, max_y;

 char array[100];

 initgraph(&gd,&gm,"C:\\TC\\BGI");

https://www.programmingsimplified.com/c/program/smiling-face-animation

 max_y = getmaxy();

 sprintf(array, "Maximum Y coordinate for current graphics mode and driver is = %d.",max_y);

 outtext(array);

 getch();

 closegraph();

 return 0;

}

getmaxcolor function returns maximum color value for current graphics mode and driver. Total

number of colors available for current graphics mode and driver are (getmaxcolor() + 1) as

color numbering starts from zero.

Declaration: int getmaxcolor();

C program of getmaxcolor

#include<graphics.h>

#include<conio.h>

main()

{

 int gd = DETECT, gm, max_colors;

 char a[100];

 initgraph(&gd,&gm,"C:\\TC\\BGI");

 max_colors = getmaxcolor();

 sprintf(a,"Maximum number of colors for current graphics mode and driver =

%d",max_colors+1);

 outtextxy(0, 40, a);

 getch();

 closegraph();

 return 0;

}

Lab Exercise 2:A

Title- Study of graphics standards

Objective: To gain knowledge of different graphics standards.

Theory:

3D Core Graphics System

The 3D Core Graphics System was the very first graphical standard ever developed. A group of

25 experts of the ACM Special Interest Group SIGGRAPH developed this "conceptual

framework". The specifications were published in 1977 and it became a foundation for many

future developments in the field of computer graphics.

GKS (Graphical Kernel System)

The Graphical Kernel System (GKS) is a document produced by the International Standards

Organization (ISO) which defines a common interface to interactive computer graphics for

application programs. GKS has been designed by a group of experts representing the national

standards institutions of most major industrialized countries. The full standard provides

functional specifications for some 200 subroutines which perform graphics input and output in a

device independent way. Application programs can thus move freely between different graphics

devices and different host computers. For the first time graphics programs have become

genuinely portable.

However, one should point out that GKS itself is not portable. Individual GKS implementations

will vary substantially as they have to support different graphics devices on different computers.

Moreover, GKS is a kernel system, and thus does not include an arbitrary collection of functions

to produce histograms or contour plots, etc. Such facilities are regarded as applications which sit

on top of the basic graphics package and, at CERN, they are provided by the Graphical

Extensions to the NAG Library , or the HPLOT package .

In order to allow particular applications to choose a graphics package with the appropriate

capability, GKS has been defined to have different levels. The level structure has two

dimensions, one for output (0, 1, or 2) and one for input (a, b, or c). Higher levels include the

capabilities of lower levels. In the United States, ANSI has defined also a level 'm', for very

simple applications, which sits below output level '0'. Most implementations provide all output

(level '2') and intermediate input (level 'b'). The reason input level 'c' is not usually supported is

that it requires asynchronous input facilities not found in all operating systems.

The GKS functions have been defined independently from a specific programming language, and

bindings to individual languages are subject to separate standards efforts which have been

undertaken for all the major languages.

The Graphical Kernel System for two dimensional graphics was adopted as an ISO standard in

1985, and since that date work has been in progress to define a three dimensional super-set

which was accepted as an International Standard during 1988. The FORTRAN binding to GKS-

3D has also been published as a Draft International Standard.

The GKS functions are separated into those which pass values to GKS for control, setting or

output, and those which inquire about status information. There are 8 distinct classes:

1. Control functions

2. Output Attributes

3. Output Primitives

4. Segment functions

5. Transformations functions

6. Input functions

7. Metafile functions

8. Inquiry functions

PHIGS

PHIGS (Programmer's Hierarchical Interactive Graphics System) is an API standard for

rendering 3D computer graphics, considered to be the 3D graphics standard for the 1980s

through the early 1990s. Subsequently, a combination of features and power led to the rise of

OpenGL, which became the most popular professional 3D API of the mid to late 1990s.

PHIGS was available as a standalone implementation (examples: Digital Equipment

Corporation's DEC PHIGS, IBM's graPHIGS, Sun's SunPHIGS) and also used with the X

Window system, supported via PEX (originally known as the "PHIGS Extension to X";

subsequently referred to as "X3d", whose letters form a rotational variant on the letters "P-E-X").

PEX consisted of an extension to X, adding commands that would be forwarded from the X

server to the PEX system for rendering. Workstations were placed in windows typically, but

could also be forwarded to take over the whole screen, or to various printer-output devices.

PHIGS was designed in the 1980s, inheriting many of its ideas from the Graphical Kernel

System of the late 1970s, and became a standard by 1989: ANSI (ANSI X3.144-1988), FIPS

(FIPS 153) and then ISO (ISO/IEC 9592 and ISO/IEC 9593). Due to its early gestation, the

standard supports only the most basic 3D graphics, including basic geometry and meshes, and

only the basic Gouraud, "Dot", and Phong shading for rendering scenes. Although PHIGS

ultimately expanded to contain advanced functions (including the more accurate Phong lighting

model and Data Mapping), other features considered standard by the mid-1990s were not

supported (notably texture mapping), nor were many machines of the era physically capable of

optimizing it to perform in real time.

The word "hierarchical" in the name refers to a notable feature of PHIGS: unlike most graphics

systems, PHIGS included a scene graph system as a part of the basic standard. Models were built

up in a Centralized Structure Store (CSS), a database containing a "world" including both the

drawing primitives and their attributes (color, line style, etc.). CSSes could be shared among a

number of virtual devices, known under PHIGS as workstations, each of which could contain

any number of "views".

Displaying graphics on the screen in PHIGS was a three-step process; first the model would be

built into a CSS, then a workstation would be created and opened, and finally the model would

be connected to the workstation. At that point the workstation would immediately render the

model, and any future changes made to the model would instantly be reflected in all applicable

workstation views.

PHIGS originally lacked the capability to render illuminated scenes, and was superseded by

PHIGS+. PHIGS+ works in essentially the same manner, but added methods for lighting and

filling surfaces within a 3D scene. PHIGS+ also introduced more advanced graphics primitives,

such as Nonuniform Rational B-spline (NURBS) surfaces. An ad hoc ANSI committee was

formed around these proposed extensions to PHIGS, changing its name to the more descriptive

and (optimistically) extensible name "PHIGS PLUS" -- "PLUS" being a slightly tongue-in-cheek

acronym for "Plus Lumière Und Surfaces" (the two major areas of advancement over the base

PHIGS standard).

The rise of OpenGL and the decline of PHIGS

OpenGL, unlike PHIGS, was an immediate-mode rendering system with no "state"; once an

object is sent to a view to be rendered it essentially disappears. Changes to the model had to be

re-sent into the system and re-rendered, a dramatically different programming mindset. For

simple projects, PHIGS was considerably easier to use and work with.

However, OpenGL's "low-level" API allowed the programmer to make dramatic improvements

in rendering performance by first examining the data on the CPU-side before trying to send it

over the bus to the graphics engine. For instance, the programmer could "cull" the objects by

examining which objects were actually visible in the scene, and sending only those objects that

would actually end up on the screen. This was kept private in PHIGS, making it much more

difficult to tune performance, but enabling tuning to happen "for free" within the PHIGS

implementation.

Given the low performance systems of the era and the need for high-performance rendering,

OpenGL was generally considered to be much more "powerful" for 3D programming. PHIGS

fell into disuse. Version 6.0 of the PEX protocol was designed to support other 3D programming

models as well, but did not regain popularity. PEX was mostly removed from XFree86 4.2.x

(2002) and finally removed from the X Window System altogether in X11R6.7.0

CGM (Computer Graphics Metafile)

All graphical elements can be specified in a textual source file that can be compiled into a binary

file or one of two text representations. CGM provides a means of graphics data interchange for

computer representation of 2D graphical information independent from any particular

application, system, platform, or device. As a metafile, i.e., a file containing information that

describes or specifies another file, the CGM format has numerous elements to provide functions

and to represent entities, so that a wide range of graphical information and geometric primitives

can be accommodated. Rather than establish an explicit graphics file format, CGM contains the

instructions and data for reconstructing graphical components to render an image using an

object-oriented approach.

Although CGM is not widely supported for web pages and has been supplanted by other formats

in the graphic arts, it is still prevalent in engineering, aviation, and other technical applications.

The initial CGM implementation was effectively a streamed representation of a sequence of

Graphical Kernel System primitive operations. It has been adopted to some extent in the areas of

technical illustration and professional design, but has largely been superseded by formats such as

SVG and DXF.

The World Wide Web Consortium has developed WebCGM, a profile of CGM intended for the

use of CGM on the Web.

Conclusion: Thus we studied the different graphics standard and how they are evolved and

contributed to graphics systems.

Lab Exercise 2: B

Title- Program for DDA Line Drawing Algorithm

Objective : To study DDA line drawing algorithms.

Theory:

Line Drawing Algorithm:

Digital Differential Analyzer (DDA) Line Algorithm

1. Start

2. Declare variables required for drawing two co-ordinates and the difference between them.

3. Input the two line end-points.

4. Calculate the difference between x co-ordinates and y co-ordinates of two points say dx

and dy.

5. Then if dx>dy then length=dx.

6. Otherwise lentgth=dy.

7. Calculate increment value for next point xincrement=dx/length and

yincrement=dy/length.

8. Start a loop k=0 and continuing till k<length ,the points will be

i. x=x+xincrement

ii.y=y+yincrement

9. Draw the new co-rdinates till we rich the length of the line.

10. Stop.

// Program to draw a line using DDA Algorithm

#include <stdio.h>

#include <math.h>

#include <glut.h>

GLdouble X1=100, Y1=100, X2=450, Y2=350; // define line end points

void LineDDA(void)

{

GLdouble dx=X2-X1 , dy=Y2-Y1,steps; // calculate diff betn line end points

float xInc,yInc,x=X1,y=Y1;

steps=(abs(dx)>abs(dy))?abs(dx):abs(dy); //max diff is length

xInc=dx/(float)steps;

yInc=dy/(float)steps;

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_POINTS);

glVertex2d(x,y); //plot initial point

for(int k=0;k<steps;k++)

{

x+=xInc; //decide next incremented x co-ord

y+=yInc; //decide next incremented y co-ord

glVertex2d(x,y); //plot each incremented point till length

}

glEnd();

glFlush();

}

void Init()

{

glClearColor(1.0,1.0,0.0,0.0); //set window color and alpha value

glColor3f(0.0,0.0,0.0); //set line color

glViewport(0 , 0 , 640 , 480); //set viewport

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0 , 640 , 0 , 480); //set viewing rectangle

}

void main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); //set color model

glutInitWindowSize(640,480); //set window size

glutInitWindowPosition(0,0); //set initial window position

glutCreateWindow("LineDDA"); //set window title

Init();

glutDisplayFunc(LineDDA);

glutMainLoop();

}

Output:

Conclusion: Thus we have studied how to draw a line using DDA algorithm.

Lab Exercise 3

Title - Program for Bresenham Line Drawing

Algorithm

Objective:To study Bresenham line drawing algorithm.

Theory:

Bresenham’s Line Algorithm

Bresenham’s line algorithm properties:

· Only uses incremental integer calculations.

· Can be adapted to display circles and other curves.

· Basic idea find next pixel from current one

1. Start

2. Declare variables required for drawing two co-ordinates and the difference between them.

3. Input the two line end-points and store left end-points in (x1,y1).

4. Plot first point (x1,y1) and calculate the difference between x co-ordinates and y co-

ordinates of two points say dx and dy and obtain the initial value of decision parameter p

as p=(2dy-dx).

5. Starting from first point (x,y) perform the following test.

6. Repeat step 7 while (x<=x2).

7. If p<0 next point is (x+1,y) and p=(p+2dy).

8. Otherwise ,the next point to plot is (x+1,y+1) and p=(p+2dy-2dx).

9. Plot the pixels at points (x,y) in specified color.

10. Stop.

// Program to draw a line using Bresenham’s Algorithm (works only for |m| < 1)

#include <GL/glut.h>

#include <stdio.h>

#include <math.h>

void init(void)

{

 glClearColor(1.0,1.0,1.0,0.0);

 glMatrixMode(GL_PROJECTION);

 gluOrtho2D(0.0,400.0,0.0,400.0);

}

void setPixel(GLint x,GLint y)

{

 glBegin(GL_POINTS);

 glVertex2i(x,y);

 glEnd();

}

void line()

{

 int x0 = 50, y0=50, xn = 300, yn = 150, x, y;

 int dx, dy, //deltas

 pk, //decision parameter

 k; //looping variable

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1 ,0, 0);

 setPixel(x0, y0); //plot first point

 // difference between starting and ending points

 dx = xn - x0;

 dy = yn - y0;

 pk = 2 * dy - dx;

 x = x0; y = y0;

 for (k = 0; k < dx-1; ++k)

 {

 if (pk < 0)

{

 pk = pk + 2 * dy; //calculate next pk

 //next pixel: (x+1, y)

 }

else

 {

 pk = pk + 2*dy - 2*dx; //next pixel: (x+1, y+1

 ++y; //calculate next pk

 }

 ++x;

 setPixel(x, y);

 }

 glFlush();

}

int main(int argc,char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); //set color model

 glutInitWindowPosition(0,0); //set initial window position

 glutInitWindowSize(500,500); //set window size

 glutCreateWindow("Bresenham Line"); //set window title

 init();

 glutDisplayFunc(line); //call line function

 glutMainLoop();

 return 0;

}

Output:

Conclusion: Thus we have studied how to draw a line using Bresenham algorithm.

Lab Exercise 4

Title - Program for Mid-Point Circle Generation

Algorithm

Objective: To study mid-point circle generation algorithm.

Theory:
Circles have the property of being highly symmetrical, which is handy when it comes to

drawing them on a display screen.

We know that there are 360 degrees in a circle. First we see that a circle is symmetrical about the x axis,

so only the first 180 degrees need to be calculated.

Next we see that it's also symmetrical about the y axis, so now we only need to calculate the first 90

degrees.

Finally we see that the circle is also symmetrical about the 45 degree diagonal axis, so we only needto

calculate the first 45 degrees.We only need to calculate the values on the border of the circle in the first

octant. The other valuesmay be determined by symmetry.

// Program:

#include<dos.h>

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

void draw_circle(int,int,int);

void symmetry(int,int,int,int);

void main()

{

int xc,yc,R;

int gd=DETECT,gm;

initgraph(&gd,&gm,"C:\\TurboC3\\BGI");

printf("Enter the center of the circle:\n");

printf("Xc =");

scanf("%d",&xc);

printf("Yc =");

scanf("%d",&yc);

printf("Enter the radius of the circle :");

scanf("%d",&R);

draw_circle(xc,yc,R);

getch();

closegraph();

}

void draw_circle(int xc,int yc,int rad)

{

int x = 0;

int y = rad;

int p = 1-rad;

symmetry(x,y,xc,yc);

for(x=0;y>x;x++)

{

if(p<0)

p += 2*x + 3;

else

{

p += 2*(x-y) + 5;

y--;

}

symmetry(x,y,xc,yc);

delay(50);

}

}

void symmetry(int x,int y,int xc,int yc)

{

putpixel(xc+x,yc-y,GREEN); //For pixel (x,y)

delay(50);

putpixel(xc+y,yc-x, GREEN); //For pixel (y,x)

delay(50);

putpixel(xc+y,yc+x, GREEN); //For pixel (y,-x)
delay(50);
putpixel(xc+x,yc+y, GREEN); //For pixel (x,-y)
delay(50);
putpixel(xc-x,yc+y, GREEN); //For pixel (-x,-y)
delay(50);
putpixel(xc-y,yc+x, GREEN); //For pixel (-y,-x)
delay(50);
putpixel(xc-y,yc-x, GREEN); //For pixel (-y,x)
delay(50);
putpixel(xc-x,yc-y, GREEN); //For pixel (-x,y)
delay(50);
}

Output:

Conclusion: Thus we have studied Mid-point circle generation algorithm.

Lab Exercise 5

Title- Drawing Basic Graphics Primitives

Objective: To study basic graphics primitives/entities and respective OpenGL functions to

implement them.

Theory:

/* hello.c This is a simple, introductory OpenGL program */

#include <GL/glut.h>

 void display(void)

 {

 glClear (GL_COLOR_BUFFER_BIT); /* clear all pixels */

 glColor3f (1.0, 0.0, 1.0);

 glBegin(GL_POLYGON); /* draw magenta polygon (rectangle)*/

 glVertex3f (-0.15, -0.15, 0.0); /*with corners at (0.25,0.25,0.0) */

 glVertex3f (0.65, -0.15, 0.0); /*(0.75, 0.75, 0.0) */

 glVertex3f (0.65, 0.65, 0.0);

 glVertex3f (-0.15, 0.65, 0.0);

 glEnd();

 glColor3f (1.0, 1.0, 0.0);

 glBegin(GL_POINTS);

 glVertex3f(0.70f, 0.50f, -0.60f);

 glEnd();

 glColor3f (0.0, 1.0, 1.0);

 glBegin(GL_LINES);

 glVertex3f(-0.10f, -0.50f, 0.90f); // origin of the line

 glVertex3f(0.90f, -0.80f, -0.80f); // ending point of the line

 glEnd();

 glColor3f (1.0, 1.0, 1.0);

 glBegin(GL_TRIANGLES);

 glVertex3f(-0.50f, -0.25f, 0.0f);

 glVertex3f(-0.55f, 0.30f, 0.0f);

 glVertex3f(0.15f,- 0.50f, 0.0f);

 glEnd();

 glFlush ();

 glutMainLoop();

 }

 int main(int argc, char** argv)

 {

 glutInit(&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); /*Declare initial

window display mode (single buffer and RGBA*/

 glutInitWindowSize (650, 550); // Declare initial window size

 glutInitWindowPosition (200, 200); // Declare initial window position

 glutCreateWindow ("Simple Demo"); //set window title

 glutDisplayFunc(display); //Register callback function to display graphics

 glutMainLoop(); // Enter main loop and process events.

 return 0;

Output

Conclusion: Thus we have studied graphics primitives and OpenGL functions to implement

them in graphics programming.

Lab Exercise 6

Title – Program using Keyboard/Mouse in OpenGL.

Objective: To study keyboard function & Mouse function.

Theory:

//Program

int main(int argc, char **argv)

{

initGLUT(argc, argv); initGL(); //Set the display callback

glutDisplayFunc(draw); //Set the keyboard callback

glutKeyboardFunc(keyboard); //Start the GLUT main event loop.

 glutMainLoop(); return 0;

 }//keyboard callback

void keyboard(unsigned char key, int x, int y)

{ switch(key)

{

 case 'r': r=1.0; g=0.0; b=0.0; break; case 'g': r=0.0; g=1.0; b=0.0;

 break;

 }

glutPostRedisplay();

 }

void draw()

{

 ... //draw a polygon

 glColor3f(r, g, b);

glBegin(GL_POLYGON);

glVertex2f(0.25, 0.25);

glVertex2f(0.75, 0.5);

 glVertex2fv(point2);

glEnd(); ... }

Output

Conclusion: Thus we have studied the keyboard Interaction.

Mouse Interaction

int main(int argc, char **argv)

{ ...

//Set the keyboard callback

 glutKeyboardFunc(keyboard);

 glutMouseFunc(mouse);

glutPassiveMotionFunc(passiveMotion);

glutMotionFunc(motion);

 ... }

void draw()

{ ... //draw a point

glColor3f(0.8, 0.8, 0.2);

glPointSize(10.0);

glBegin(GL_POINTS);

glVertex2f(pos_x, pos_y);

 glEnd();

 ... }

Conclusion: Thus we have studied the mouse Interaction.

Lab Exercise 7

Title - Program using Menu / Submenu in OpenGL

Objective: To study Menu & Submenu in opengl.

Theory :

GLUT supports simple cascading pop-up menus. They are designed to let a user select various

modes within a program. The functionality is simple and minimalistic and is meant to be that

way. Do not mistake GLUT’s pop-up menu facility with an attempt to create a full-featured user

interface. glutCreateMenu creates a Menu in GLUT. The syntax of glutCreateMenu is

int glutCreateMenu(void (*func)(int value));

This function defines the callback that has to be called when a menu item was selected. This

callback function has one parameter, the value. This function returns an int, this is the menu

identifier. This identifier is needed when you would want to attach this menu as a submenu. This

is illustrated in sample example later.

void glutAddMenuEntry(char *name, int value);

This adds an entry to the menu with the label defined by name and the second parameter is the

value that will be passed to the callback function. The menu is being added to the current menu.

Each menu entry that is being added is added at the bottom of the current menu.

void glutAddSubMenu(char *name, int menu);

This adds the menu identified by the menu identifier as submenu with a given name to the

current menu. The program won’t work if it contains an infinite loop of menus.

void glutAttachMenu(int button);

This attaches the current menu to a certain (mouse) event, you can let a menu listen to a specified

mouse button, button can be one of the following:GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,

and GLUT_RIGHT_BUTTON. You can also detach the menu using void glutDetachMenu(int

button);.

// Program
#include <windows.h>
#include <GL/glut.h>
static int window;
static int menu_id;
static int submenu_id;
static int value = 0;
void menu(int num){
 if(num == 0){

 glutDestroyWindow(window);
 exit(0);
 }else{
 value = num;
 }
 glutPostRedisplay();
}
void createMenu(void){ submenu_id = glutCreateMenu(menu);
 glutAddMenuEntry("Sphere", 2);
 glutAddMenuEntry("Cone", 3);
 glutAddMenuEntry("Torus", 4);
 glutAddMenuEntry("Teapot", 5); menu_id = glutCreateMenu(menu);
 glutAddMenuEntry("Clear", 1);
 glutAddSubMenu("Draw", submenu_id);
 glutAddMenuEntry("Quit", 0); glutAttachMenu(GLUT_RIGHT_BUTTON);
}
void display(void){
 glClear(GL_COLOR_BUFFER_BIT); if(value == 1){
 return; //glutPostRedisplay();
 }else if(value == 2){
 glPushMatrix();
 glColor3d(1.0, 0.0, 0.0);
 glutWireSphere(0.5, 50, 50);
 glPopMatrix();
 }else if(value == 3){
 glPushMatrix();
 glColor3d(0.0, 1.0, 0.0);
 glRotated(65, -1.0, 0.0, 0.0);
 glutWireCone(0.5, 1.0, 50, 50);
 glPopMatrix();
 }else if(value == 4){
 glPushMatrix();
 glColor3d(0.0, 0.0, 1.0);
 glutWireTorus(0.3,0.6,100,100);
 glPopMatrix();
 }else if(value == 5){
 glPushMatrix();
 glColor3d(1.0, 0.0, 1.0);
 glutSolidTeapot(0.5);
 glPopMatrix();
 }
 glFlush();
}
int main(int argc, char **argv){ glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGBA | GLUT_SINGLE);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(100,100);
 window = glutCreateWindow("Menus and Submenus - Programming Techniques");
 createMenu(); glClearColor(0.0,0.0,0.0,0.0);
 glutDisplayFunc(display); glutMainLoop();
 return EXIT_SUCCESS;
}

Output

Conclusion: Thus we have studied how to create menu & submenu in opengl.

Lab Exercise 8

Title - Program using 2-D Transformation

Objective: To study basic transformation and how to apply them on graphics objects.

Theory:

Geometric image transformation functions use mathematical transformations to crop,

pad, scale, rotate, transpose or otherwise alter an image array to produce a modified view of

an image. A transformation thus is the process of mapping points to other locations. Common

transformations are Translation, Scaling and Rotation.

When an image undergoes a geometric transformation, some or all of the pixels within the source

image are relocated from their original spatial coordinates to a new position in the output image.

When a relocated pixel does not map directly onto the center of a pixel location, but falls

somewhere in between the centers of pixel locations, the pixel's value is computed by sampling

the values of the neighboring pixels.

Basic 2D Transforms

Translation

This transform can change the position of object in straight-line.

Fig .Point translation

Scaling

This transform can change length and possibly direction of a vector

A vector with Cartesian coordinates (x,y) is transformed as (x',y') with scaling factor Sx and Sy

for (x,y) respectively.

Fig. Triangle Scaling

Rotation

In matrix form, the equivalent transformation that takes a to b is

For example a matrix that rotates vectors by π/4 radians (45 degrees) is

Fig . Triangle rotation

Shearing

A shear is something that pushes things sideways.

The horizontal and vertical shear matrices are

Program to implement basic 2D transformations

#include <windows.h> // for MS Windows

#include <GL/glut.h> // GLUT, include glu.h and gl.h

/* Initialize OpenGL Graphics */

void initGL()

{

 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Black and opaque window color

}

/* Handler for window-repaint event. Call back when the window first appears and

 whenever the window needs to be re-painted. */

void display()

{

 glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer

 glMatrixMode(GL_MODELVIEW); // To operate on Model-View matrix

 glLoadIdentity(); // Reset the model-view matrix

 glTranslatef(-0.5f, 0.4f, 0.0f); // Translate left and up

 glBegin(GL_QUADS); // Each set of 4 vertices form a quad

 glColor3f(1.0f, 0.0f, 0.0f); // Red

 glVertex2f(-0.3f, -0.3f); // Define vertices in counter-clockwise (CCW) order

 glVertex2f(0.3f, -0.3f); //so that the normal (front-face) is facing you

 glVertex2f(0.3f, 0.3f);

 glVertex2f(-0.3f, 0.3f);

 glEnd();

 glTranslatef(0.1f, -0.7f, 0.0f); // Translate right and down

 glBegin(GL_QUADS); // Each set of 4 vertices form a quad

 glColor3f(0.0f, 1.0f, 0.0f); // Green

 glVertex2f(-0.3f, -0.3f);

 glVertex2f(0.3f, -0.3f);

 glVertex2f(0.3f, 0.3f);

 glVertex2f(-0.3f, 0.3f);

 glEnd();

 glTranslatef(-0.3f, -0.2f, 0.0f); // Translate left and down

 glBegin(GL_QUADS); // Each set of 4 vertices form a quad

 glColor3f(0.2f, 0.2f, 0.2f); // Dark Gray

 glVertex2f(-0.2f, -0.2f);

 glColor3f(1.0f, 1.0f, 1.0f); // White

 glVertex2f(0.2f, -0.2f);

 glColor3f(0.2f, 0.2f, 0.2f); // Dark Gray

 glVertex2f(0.2f, 0.2f);

 glColor3f(1.0f, 1.0f, 1.0f); // White

 glVertex2f(-0.2f, 0.2f);

 glEnd();

 glTranslatef(1.1f, 0.2f, 0.0f); // Translate right and up

 glBegin(GL_TRIANGLES); // Each set of 3 vertices form a triangle

 glColor3f(0.0f, 0.0f, 1.0f); // Blue

 glVertex2f(-0.3f, -0.2f);

 glVertex2f(0.3f, -0.2f);

 glVertex2f(0.0f, 0.3f);

 glEnd();

 glTranslatef(0.2f, -0.3f, 0.0f); // Translate right and down

 glRotatef(180.0f, 0.0f, 0.0f, 1.0f); // Rotate 180 degree

 glBegin(GL_TRIANGLES); // Each set of 3 vertices form a triangle

 glColor3f(1.0f, 0.0f, 0.0f); // Red

 glVertex2f(-0.3f, -0.2f);

 glColor3f(0.0f, 1.0f, 0.0f); // Green

 glVertex2f(0.3f, -0.2f);

 glColor3f(0.0f, 0.0f, 1.0f); // Blue

 glVertex2f(0.0f, 0.3f);

 glEnd();

 glScalef(1.5f, 1.5f, 0.0f); // Translate right and down

 //glTranslatef(-0.1f, 1.0f, 0.0f);

 glBegin(GL_POLYGON); // The vertices form one closed polygon

 glColor3f(1.0f, 1.0f, 0.0f); // Yellow

 glVertex2f(-0.1f, -0.2f);

 glVertex2f(0.1f, -0.2f);

 glVertex2f(0.2f, 0.0f);

 glVertex2f(0.1f, 0.2f);

 glVertex2f(-0.1f, 0.2f);

 glVertex2f(-0.2f, 0.0f);

 glEnd();

 glFlush(); // Render now

}

 /* Handler for window re-size event. Called back when the window first appears and

 whenever the window is re-sized with its new width and height */

void reshape(GLsizei width, GLsizei height)

{

 // Compute aspect ratio of the new window

 if (height == 0) height = 1; // To prevent divide by 0

 GLfloat aspect = (GLfloat)width / (GLfloat)height;

 // Set the viewport to cover the new window

 glViewport(0, 0, width, height);

 // Set the aspect ratio of the clipping area to match the viewport

 glMatrixMode(GL_PROJECTION); // To operate on the Projection matrix

 glLoadIdentity();

 if (width >= height) {

 // aspect >= 1, set the height from -1 to 1, with larger width

 gluOrtho2D(-1.0 * aspect, 1.0 * aspect, -1.0, 1.0);

 }

else

 {

 // aspect < 1, set the width to -1 to 1, with larger height

 gluOrtho2D(-1.0, 1.0, -1.0 / aspect, 1.0 / aspect);

 }

}

/* Main function: GLUT runs as a console application starting at main() */

int main(int argc, char** argv)

{

 glutInit(&argc, argv); // Initialize GLUT

 glutInitWindowSize(640, 480); // Set the window's initial width & height - non-square

 glutInitWindowPosition(50, 50); // Position the window's initial top-left corner

 glutCreateWindow("Model Transform"); // Create window with the given title

 glutDisplayFunc(display); // Register callback handler for window re-paint event

 glutReshapeFunc(reshape); // Register callback handler for window re-size event

 initGL(); // Our own OpenGL initialization

 glutMainLoop(); // Enter the infinite event-processing loop

 return 0;

}

Output

Conclusion: Thus we have studied how transformations can be applied on objects .

Lab Exercise 9

Title-Program for Window to Viewport

transformation

Objective: Study of window to viewport mapping

Theory:

A Window is a rectangular region of the real world coordinate system that surrounds that portion

of the image that we wish to have displayed.

• A Viewport is a rectangular region of the display device (hence in the device coordinate

system) where we wish to display the contents of the window.

• A Window-to-Viewport Transformation is thus a geometric transformation which maps a

scene (or picture) from a real world window to a region of a display (viewport) and hence in

• The mapping is thus from the real world coordinate system to the device coordinate system.

Unique Identification of a Window Viewport Notation

The Aspect Ratio of any rectangle is the ratio: (height of the rectangle) / (width of the rectangle)

It is important for transformations from real world scenes to display with the same aspect ratio as

any change in the aspect ratio may alter the appearance of the displayed object. Where the aspect

ration is not maintained, shapes such as a circle may appear in the viewport as an ellipse, a

square may appear as a rectangle etc.

//Program
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<stdlib.h>

void main()

{

 float xwmin , xwmax, ywmax, ywmin;

 float xvmin, xvmax, yvmax, yvmin;

 float x[10],y[10],yv,xv,sx,sy;

 int gd=DETECT,gm,i;

 clrscr();

 printf("\n enter window port coordinates:\n(xwmin,ywmin,xwmax,ywmax): ");

 scanf("%f%f%f%f",&xwmin,&ywmin,&xwmax,&ywmax);

 printf("\n enter view port coordinates:\n(xvmin,yvmin,xvmax,yvmax): ");

 scanf("%f%f%f%f",&xvmin,&yvmin,&xvmax,&yvmax);

 printf("\n enter vertices for triangle: ");

 for(i=0;i < 3;i++)

 {

 printf("\n enter(x%d,y%d):",i,i);

 scanf("%f%f",&x[i],&y[i]);

 }

 sx=((xvmax-xvmin)/(xwmax-xwmin));

 sy=((yvmax-yvmin)/(ywmax-xwmin));

 initgraph(&gd,&gm," ");

 outtextxy(80,30,"window port");

 rectangle(xwmin,ywmin,xwmax,ywmax);

 for(i=0;i <2;i++)

 {

 line(x[i],y[i],x[i+1],y[i+1]);

 }

 line(x[2],y[2],x[0],y[0]);

 getch();

 cleardevice();

 for(i=0;i <3;i++)

 {

 x[i]=xvmin+((x[i]-xwmin)*sx);

 y[i]=yvmin+((y[i]-ywmin)*sy);

 }

 outtextxy(150,10,"view port");

 rectangle(xvmin,yvmin,xvmax,yvmax);

 for(i=0;i <2;i++)

 {

 line(x[i],y[i],x[i+1],y[i+1]);

 }

 line(x[2],y[2],x[0],y[0]);

 getch();

}

OUTPUT:

http://2.bp.blogspot.com/_j82bvWjy4n4/S4ZNbXnUHJI/AAAAAAAAAD0/dfGMhOHEZxw/s1600-h/untitled2.JPG
http://2.bp.blogspot.com/_j82bvWjy4n4/S4ZNbXnUHJI/AAAAAAAAAD0/dfGMhOHEZxw/s1600-h/untitled2.JPG
http://3.bp.blogspot.com/_j82bvWjy4n4/S4ZNTMS2kKI/AAAAAAAAADk/EqXafr0-OA8/s1600-h/untitled.JPG
http://3.bp.blogspot.com/_j82bvWjy4n4/S4ZNadl9vtI/AAAAAAAAADs/rlW8buHjP50/s1600-h/untitled1.JPG

Conclusion : Hence, we have studied window to viewport transformations in C

http://2.bp.blogspot.com/_j82bvWjy4n4/S4ZNbXnUHJI/AAAAAAAAAD0/dfGMhOHEZxw/s1600-h/untitled2.JPG

Lab Exercise 10

Title-Program for Cohen Sutherland Line-clipping

algorithm

Objective:To study Cohen Sutherland line clipping algorithm.

Theory:

Program to implement the Cohen-Sutherland line-clipping algorithm. Make provision to specify

the input line, window for clipping and viewport for displaying the clipped image.

Algorithm at work:

Line-Clipping

In computer graphics, line clipping is the process of removing lines or portions of lines outside

of an area of interest. Typically, any line or part thereof which is outside of the viewing area is

removed.

Cohen-Sutherland Line-Clipping algorithm:

This algorithm divides a 2D space into 9 parts, of which only the middle part (viewport) is

visible. The algorithm includes, excludes or partially includes the line based on where the two

endpoints are:

 Both endpoints are in the viewport (bitwise OR of endpoints == 0): trivial accept.

 Both endpoints are in the same part, which is not visible (bitwise AND of endpoints != 0):

trivial reject.

 Both endpoints are in different parts: In case of this non trivial situation the algorithm finds one

of the two points that are outside the viewport (there is at least one point outside). The

intersection of the outpoint and extended viewport border is then calculated (i.e. with the

parametric equation for the line) and this new point replaces the outpoint. The algorithm repeats

until a trivial accept or reject occurs.

Steps for Cohen-Sutherland Algorithm

1. End-points pairs are checked for trivial acceptance or rejection using outcode (region code,

each of the 9 parts are assigned a 4 bit code indicating their location with respect to the window/

region of interest).

2. If not trivially accepted or rejected, divide the line segment into two at a clip edge;

3. Iteratively clipped by test trivial-acceptance or trivial-rejection, and divided into two segments

until completely inside or trivial-rejection.

// Program
#include"stdio.h"

#include"conio.h"

#include"graphics.h"

void main()

{

int gd=DETECT, gm;

float i,xmax,ymax,xmin,ymin,x1,y1,x2,y2,m;

float start[4],end[4],code[4];

clrscr();

initgraph(&gd,&gm,"");

printf("\n\tPlease enter the bottom left co-ordinate of viewport: ");

scanf("%f %f",&xmin,&ymin);

printf("\n\tPlease enter the top right co-ordinate of viewport: ");

scanf("%f %f",&xmax,&ymax);

printf("\nPlease enter the co-ordinates for starting point of line: ");

scanf("%f %f",&x1,&y1);

printf("\nPlease enter the co-ordinates for ending point of line: ");

scanf("%f %f",&x2,&y2);

for(i=0;i <4;i++)

{

start[i]=0;

end[i]=0;

}

m=(y2-y1)/(x2-x1);

if(x1 <xmin) start[0]=1;

if(x1 >xmax) start[1]=1;

if(y1 >ymax) start[2]=1;

if(y1 <ymin) start[3]=1;

if(x2 <xmin) end[0]=1;

if(x2 >xmax) end[1]=1;

if(y2 >ymax) end[2]=1;

if(y2 <ymin) end[3]=1;

for(i=0;i <4;i++)

code[i]=start[i]&&end[i];

if((code[0]==0)&&(code[1]==0)&&(code[2]==0)&&(code[3]==0))

{

if((start[0]==0)&&(start[1]==0)&&(start[2]==0)&&(start[3]==0)&&(end[0]==0)&&(end[1]==0

)&&(end[2]==0)&&(end[3]==0))

{

cleardevice();

 printf("\n\t\tThe line is totally visible\n\t\tand not a clipping candidate");

 rectangle(xmin,ymin,xmax,ymax);

 line(x1,y1,x2,y2);

 getch();

}

else

{

 cleardevice();

 printf("\n\t\tLine is partially visible");

 rectangle(xmin,ymin,xmax,ymax);

 line(x1,y1,x2,y2);

 getch();

if((start[2]==0)&&(start[3]==1))

{

 x1=x1+(ymin-y1)/m;

 y1=ymin;

}

if((end[2]==0)&&(end[3]==1))

{

 x2=x2+(ymin-y2)/m;

 y2=ymin;

}

if((start[2]==1)&&(start[3]==0))

{

 x1=x1+(ymax-y1)/m;

 y1=ymax;

}

if((end[2]==1)&&(end[3]==0))

{

 x2=x2+(ymax-y2)/m;

 y2=ymax;

}

if((start[1]==0)&&(start[0]==1))

{

 y1=y1+m*(xmin-x1);

 x1=xmin;

}

if((end[1]==0)&&(end[0]==1))

{

 y2=y2+m*(xmin-x2);

 x2=xmin;

}

if((start[1]==1)&&(start[0]==0))

{

 y1=y1+m*(xmax-x1);

 x1=xmax;

}

if((end[1]==1)&&(end[0]==0))

{

 y2=y2+m*(xmax-x2);

 x2=xmax;

}

clrscr();

cleardevice();

printf("\n\t\tAfter clippling:");

rectangle(xmin,ymin,xmax,ymax);

line(x1,y1,x2,y2);

getch();

}

}

else

{

 clrscr();

 cleardevice();

 printf("\nLine is invisible");

 rectangle(xmin,ymin,xmax,ymax);

}

getch();

closegraph();

}

Input:

Please enter the bottom left co-ordinate of viewport: 100 100

Please enter the top right co-ordinate of viewport: 400 400

Please enter the coordinates for starting point of line: 120 60

Please enter the coordinates for ending point of line: 350 450

Output:

Conclusion: Thus we have studied Line Clipping

https://2.bp.blogspot.com/-755kIoyn0eE/V5RNLVodL6I/AAAAAAAABGg/ImGgo-UzVvgHsPIU_WlXceZmmuplWWScACLcB/s1600/cohen-sutherland-line-clipping_1.JPG
https://4.bp.blogspot.com/-5D-Y0JVm3Yo/V5RNLc4LDmI/AAAAAAAABGk/DBrtOG-Dp2Agna44nYEoT0Fm4w2qudvUwCLcB/s1600/cohen-sutherland-line-clipping_2.JPG

Lab Exercise 11

Title-Program for polygon filling using flood fill

method.

Objective: : Implement Polygon filling algorithms [Flood-Fill Algorithm] in C.

Theory :

Polygon Filling : Approaches used to fill polygon

1)Seed Fill Approaches 2 algorithms: Boundary Fill and Flood Fill works at the pixel level

suitable for interactive painting applications

2) Scan line Fill Approaches works at the polygon level better performance Flood fill, also called

seed fill, is an algorithm that determines the area connected to a given node in a multi-

dimensional array. It is used in the "bucket" fill tool of paint programs to fill connected,

similarly-colored areas with a different color, and in games such as Go and Minesweeper for

determining which pieces are cleared. When applied on an image to fill a particular bounded area

with color, it is also known as boundary fill.

 #include stdio.h

 #include conio.h

 #include graphics.h

#include dos.h

void flood(int,int,int,int);

 void main()

 {

 int gd,gm=DETECT;

clrscr();

detectgraph(&gd,&gm);

 initgraph(&gd,&gm,”c:\\tc\\bgi”);

rectangle(50,50,100,100);

flood(55,55,12,0); getch();

}

void flood(int x,int y, int fill_col, int old_col)

{

 if(getpixel(x,y)==old_col)

{

delay(10);

 putpixel(x,y,fill_col);

flood(x+1,y,fill_col,old_col);

 flood(x-1,y,fill_col,old_col);

 flood(x,y+1,fill_col,old_col);

 flood(x,y-1,fill_col,old_col);

 }

}

 Output :

Conclusion : Hence, we have studied Polygon filling algorithms [Flood-Fill Algorithm]

Lab Exercise 12

Title-Design an application in OpenGL

Objective : To study OpenGL transformation matrices and concatenation of transformation

Theory:

Related Topics: OpenGL Pipeline, OpenGL Projection Matrix, Homogeneous Coordinates

Overview

· OpenGL Transform Matrix

· Example: GL_MODELVIEW Matrix

· Example: GL_PROJECTION Matrix

Geometric data such as vertex positions and normal vectors are transformed via Vertex

Operation and Primitive Assembly operation in OpenGL pipeline before raterization

process.

OpenGL vertex transformation

Object Coordinates

It is the local coordinate system of objects and is initial position and orientation of objects before

any transform is applied. In order to transform objects, use glRotatef(), glTranslatef(), glScalef().

Eye Coordinates

It is yielded by multiplying GL_MODELVIEW matrix and object coordinates. Objects are

transformed from object space to eye space using GL_MODELVIEW matrix in OpenGL.

GL_MODELVIEW matrix is a combination of Model and View matrices (). Model transform

is to convert from object space to world space. And, View transform is to convert from world

space to eye space.

Program to draw a color cube and spin it using OpenGL transformation matrices.

Program Code:

#include<stdlib.h>

#include<GL/glut.h>

GLfloat vertices[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-1.0},{-1.0,-

1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat normals[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-1.0},{-1.0,-

1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat

colors[][3]={{0.0,0.0,0.0},{1.0,0.0,0.0},{1.0,1.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0},{1.0,0.0,1.0},{

1.0,1.0,1.0},{0.0,1.0,1.0}};

void polygon(int a ,int b,int c, int d)

{

glBegin(GL_POLYGON);

glColor3fv(colors[a]);

glNormal3fv(normals[a]);

glVertex3fv(vertices[a]);

glColor3fv(colors[b]);

glNormal3fv(normals[b]);

glVertex3fv(vertices[b]);

glColor3fv(colors[c]);

glNormal3fv(normals[c]);

glVertex3fv(vertices[c]);

glColor3fv(colors[d]);

glNormal3fv(normals[d]);

glVertex3fv(vertices[d]);

glEnd();

}

void colorcube()

{

polygon(0,3,2,1);

polygon(2,3,7,6);

polygon(0,4,7,3);

polygon(1,2,6,5);

polygon(4,5,6,7);

polygon(0,1,5,4);

}

static GLfloat theta[]={0.0,0.0,0.0};

static GLint axis=2; void display()

{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glRotatef(theta[0],1.0,0.0,0.0);

glRotatef(theta[1],0.0,1.0,0.0);

glRotatef(theta[2],0.0,0.0,1.0);

colorcube();

glFlush();

glutSwapBuffers();

}

void spincube()

{

theta[axis]+=1.0;

if(theta[axis]>360.0)theta[axis]-=360.0;

glutPostRedisplay();

}

void mouse(int btn,int state,int x,int y)

{

if(btn==GLUT_LEFT_BUTTON&&state==GLUT_DOWN)axis=0;

if(btn==GLUT_MIDDLE_BUTTON&&state==GLUT_DOWN)axis=1;

if(btn==GLUT_RIGHT_BUTTON&&state==GLUT_DOWN)axis=2;

}

void myreshape(int w,int h)

{

glViewport(0,0,w,h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if(w<=h)

glOrtho(-2.0,2.0,-2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,-10.0,10.0);

else

glOrtho(-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,-2.0,2.0,-10.0,10.0);

glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow("Rotating Cube");

glutDisplayFunc(display);

glutIdleFunc(spincube);

glutMouseFunc(mouse);

glutReshapeFunc(myreshape);

glEnable(GL_DEPTH_TEST);

glutMainLoop();

}

Output:

Conclusion:Thus we have studied OpenGL transformation matrix.

3. Quiz on the subject:

4. Conduction of Viva –Voce Examinnations

Teacher should conduct oral exams of the students with full preparation. Normally, the

objective questions with guess are to be avoided. To make it meaningful, the questions

should be such that depth of the students in the subject is tested. Oral examinations are to be

conducted in cordial environment amongst the teachers taking the examination. Teachers

taking such examinations should not have ill thoughts about each other and courtesies should

be offered to each other in case of difference of opinion, which should be critically

suppressed in front of the students.

5. Evaluation and marking system:
Basic honesty in the evaluation and marking system is absolutely essential and in the process

impartial nature of the evaluator is required in the examination system to become. It is a

primary responsibility of the teacher to see that right students who are really putting up lot of

hard work with right kind of intelligence are correctly awarded.

The marking patterns should be justifiable to the students without any ambiguity and teacher

should see that students are faced with just circumstances.

