
TPCT’s College of Engineering, Osmanabad

Second Year Engineering

Semester-I

CSE: Linux Operating System

List of Experiments with lab Manuals

1. Installation of Linux operating system using CD/DVD/USB drive or PXE boot.

2. Execution of various file & directory handling commands.

3. Execution of simple C and C++ programs using CC and GCC compiler.

4. Create, mount & resize partition on disk.

5. Create user, group and assign various permissions to access a directory.

6. Share a directory in LAN using SMB.

7. Write a shell script program input-output statements and loops.

8. Write a shell script program using array & case statement.

9. Use of various text processing tools: grep & sed.

10. Write a program in AWK using loops.

Experiment No. 01

Aim: Installation of Linux operating system using CD/DVD/USB drive or PXE boot.

Tools Required: Linux operating system(any flavor) CD/DVD/USB.

Objective: To learn installation of Linux operating system.

Thoery:

1. Boot your system with OpenSUSE 12.3 installation media i.e CD/DVD or ISO image.

2. Choose installation options to install openSUSE 12.3 on you system. Please
select openSUSE 12.3 GNOME Live options to test it, before installation.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-110.png
https://www.tecmint.com/wp-content/uploads/2013/03/sl-21.png

3. Loading Linux kernel.

4. Welcome screen, From where we can select Language and keyboard layout.
Read license agreement and proceed further installation once agreed.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-3.jpg
https://www.tecmint.com/wp-content/uploads/2013/03/sl-41.png

5. Clock and timezone settings.

6. Please click on change if you want custom setting of date and time. You can
change it manually or sync with NTP Server as show below. Click Accept once
done.

Set Date and Time

7. File system partitioning. We opted default filesystem partition. You may
choose manual filesystem partitioning as options provided.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-5.jpg
https://www.tecmint.com/wp-content/uploads/2013/03/sl-61.png

OpenSuse File System Partitioning

8. Create new user and it’s password. Uncheck all three options. Click
on change to select authentication method.

Create User and Password

https://www.tecmint.com/wp-content/uploads/2013/03/sl-71.png
https://www.tecmint.com/wp-content/uploads/2013/03/sl-81.png

9. Please select authentication method and click on Accept.

Select Authentication Method

10. Set root user password and click on Next.

Set root User and Password

https://www.tecmint.com/wp-content/uploads/2013/03/sl-91.png
https://www.tecmint.com/wp-content/uploads/2013/03/sl-101.png

11. Verify settings, you may change settings after clicking on headlines or click
on Change button. Once done click on Install.

Verify OpenSuse Settings

12. Installation confirmation. Click on Install to proceed.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-111.png
https://www.tecmint.com/wp-content/uploads/2013/03/sl-121.png

Start OpenSuse Installation

13. Performing installation. Creating volume and formatting filesystem for
installation. Sit back and relax… This may take several time.

Performing OpenSuse Installation

14. Installation completed, remove installation media and click on Reboot Now.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-131.png

OpenSuse Installation Completed

15. Post installation.

OpenSuse Post Installation

https://www.tecmint.com/wp-content/uploads/2013/03/sl-141.png
https://www.tecmint.com/wp-content/uploads/2013/03/sl-151.png

16. Login screen. Supply password for user created during installation.

OpenSuse Login Screen

17. openSUSE 12.3 Desktop.

OpenSuse 12.3 Desktop

Conclusion: Hence we have implemented installation of Linux operating system.

https://www.tecmint.com/wp-content/uploads/2013/03/sl-16.jpg
https://www.tecmint.com/wp-content/uploads/2013/03/sl-17.jpg

Experiment No. 02

1. Aim: Execution of various file & directory handling commands.

Tools Required: Linux operating system.

Objective: To learn how to implement and usage of file and directory handling

commands.

Theory:

mkdir - make directories

Usage

mkdir [OPTION] DIRECTORY

Options

Create the DIRECTORY(ies), if they do not already exist.

 Mandatory arguments to long options are mandatory for short options too.

 -m, mode=MODE set permission mode (as in chmod), not rwxrwxrwx - umask

 -p, parents no error if existing, make parent directories as needed

 -v, verbose print a message for each created directory

 -help display this help and exit

 -version output version information and exit

cd - change directories

Use cd to change directories. Type cd followed by the name of a directory to access that

directory.Keep in mind that you are always in a directory and can navigate to directories

hierarchically above or below.

mv- change the name of a directory

Type mv followed by the current name of a directory and the new name of the directory.

 Ex: mv testdir newnamedir

pwd - print working directory

will show you the full path to the directory you are currently in. This is very handy to use,

especially when performing some of the other commands on this page

 rmdir - Remove an existing directory

 rm -r

Removes directories and files within the directories recursively.

chown - change file owner and group

Usage

chown [OPTION] OWNER[:[GROUP]] FILE

chown [OPTION] :GROUP FILE

chown [OPTION] --reference=RFILE FILE

Options

Change the owner and/or group of each FILE to OWNER and/or GROUP. With --reference,

change the owner and group of each FILE to those of RFILE.

 -c, changes like verbose but report only when a change is made

 -dereference affect the referent of each symbolic link, rather than the symbolic link itself

 -h, no-dereference affect each symbolic link instead of any referenced file (useful only on

systems that can change the ownership of a symlink)

 -from=CURRENT_OWNER:CURRENT_GROUP

 change the owner and/or group of each file only if its current owner and/or group match

those specified here. Either may be omitted, in which case a match is not required for the

omitted attribute.

-no-preserve-root do not treat `/' specially (the default)

-preserve-root fail to operate recursively on `/'

-f, -silent, -quiet suppress most error messages

-reference=RFILE use RFILE's owner and group rather than the specifying

OWNER:GROUP values

-R, -recursive operate on files and directories recursively

-v, -verbose output a diagnostic for every file processed

The following options modify how a hierarchy is traversed when the -R option is also

specified. If more than one is specified, only the final one takes effect.

-H if a command line argument is a symbolic link to a directory, traverse it

-L traverse every symbolic link to a directory encountered

-P do not traverse any symbolic links (default)

chmod - change file access permissions

Usage

chmod [-r] permissions filenames

 r Change the permission on files that are in the subdirectories of the directory that you are

currently in. permission Specifies the rights that are being granted. Below is the

different rights that you can grant in an alpha numeric format.filenames File or directory

that you are associating the rights with Permissions

u - User who owns the file.

g - Group that owns the file.

o - Other.

a - All.

r - Read the file.

w - Write or edit the file.

x - Execute or run the file as a program.

Numeric Permissions:

CHMOD can also to attributed by using Numeric Permissions:

400 read by owner

040 read by group

004 read by anybody (other)

200 write by owner

020 write by group

002 write by anybody

100 execute by owner

010 execute by group

001 execute by anybody

ls - Short listing of directory contents

-a list hidden files

-d list the name of the current directory

-F show directories with a trailing '/'

 executable files with a trailing '*'

-g show group ownership of file in long listing

http://www.debianhelp.co.uk/commands.htm##

-i print the inode number of each file

-l long listing giving details about files and directories

-R list all subdirectories encountered

-t sort by time modified instead of name

cp - Copy files

cp myfile yourfile

Copy the files "myfile" to the file "yourfile" in the current working directory. This command

will create the file "yourfile" if it doesn't exist. It will normally overwrite it without warning

if it exists.

cp -i myfile yourfile

With the "-i" option, if the file "yourfile" exists, you will be prompted before it is

overwritten.

cp -i /data/myfile

Copy the file "/data/myfile" to the current working directory and name it "myfile". Prompt

before overwriting the file.

cp -dpr srcdir destdir

Copy all files from the directory "srcdir" to the directory "destdir" preserving links (-

poption), file attributes (-p option), and copy recursively (-r option). With these options, a

directory and all it contents can be copied to another dir

Conclusion: Hence we have implemented various file and directory handling commands.

http://www.debianhelp.co.uk/commands.htm##

Experiment No.03

Aim: Execution of simple C and C++ programs using CC and GCC compiler

Tools Required: Linux operating system, cc/gcc compiler.

Theory:

Step 1. Use a text editor to create the C source code.

 Type the command gedit hello.c and enter the C source code below:

 #include main()

{

 printf("Hello World\n");

 }

 Close the editor window.

Step 2. Compile the program.

Type the command gcc -o hello hello.c

This command will invoke the GNU C compiler to compile the file hello.c and output (-o) the result to an

executable called hello.

Step34. Execute the program.

Type the command ./hello

This should result in the output

 Hello World

Conclusion: Hence we have implemented c/c++ program.

Experiment No.04

1. Aim: Create, mount & resize partition on disk.
Tools Required: Linux operating system.

Objective: To learn how to create partition, how to mount and un mount partition and
how to resize a partition.

Theory:
Creating a New Partition in Linux
In most Linux systems, you can use the fdisk utility to create a new partition and to do other
disk management operations.
Note: To be able to execute the commands necessary to create a new partition on Linux,
you must have the root privileges.
As a tool with a text interface, fdisk requires typing the commands on the fdisk command
line. The following fdisk commands may be helpful:

Options Description

m Displays the available commands.

p Displays the list of existing partitions on your hda drive.
Unpartitioned space is not listed.

n Creates a new partition.

q Exits fdisk without saving your changes.

l Lists partition types.

w Writes changes to the partition table.

To create a new partition on Linux
1. Start a terminal.
2. Start fdisk using the following command:
/sbin/fdisk /dev/hda
where /dev/hda stands for the hard drive that you want to partition.
3. In fdisk, to create a new partition, type the following command:
n

 When prompted to specify the Partition type, type p to create a primary
partition or e to create an extended one. There may be up to four primary
partitions. If you want to create more than four partitions, make the last
partition extended, and it will be a container for other logical partitions.

 When prompted for the Number, in most cases, type 3 because a typical Linux
virtual machine has two partitions by default.

 When prompted for the Start cylinder, type a starting cylinder number or
press Return to use the first cylinder available.

 When prompted for the Last cylinder, press Return to allocate all the available
space or specify the size of a new partition in cylinders if you do not want to use

all the available space.
By default, fdisk creates a partition with a System ID of 83. If you're unsure of the
partition's System ID, use the
l
command to check it.
4. Use the
w
command to write the changes to the partition table.
5. Restart the virtual machine by entering the
reboot
command.
6. When restarted, create a file system on the new partition. We recommend that you use

the same file system as on the other partitions. In most cases it will be either
the Ext3 or ReiserFS file system. For example, to create the Ext3 file system, enter the
following command:

/sbin/mkfs -t ext3 /dev/hda3
7. Create a directory that will be a mount point for the new partition. For example, to

name it data, enter:
mkdir /data
8. Mount the new partition to the directory you have just created by using the following

command:
mount /dev/hda3 /data
9. Make changes in your static file system information by editing the /etc/fstab file in any

of the available text editors. For example, add the following string to this file:
/dev/hda3 /data ext3 defaults 0 0
In this string /dev/hda3 is the partition you have just created, /data is a mount point for the
new partition, Ext3 is the file type of the new partition. For the exact meaning of other
items in this string, consult the Linux documentation for the mount and fstab commands.
10. Save the /etc/fstab file.

Partitioning with fdisk

This section shows you how to actually partition your hard drive with the fdisk utility.

Linux allows only 4 primary partitions. You can have a much larger number of logical

partitions by sub-dividing one of the primary partitions. Only one of the primary

partitions can be sub-divided.

Examples:

1. Four primary partitions

2. Mixed primary and logical partitions

5.1. fdisk usage

fdisk is started by typing (as root) fdisk device at the command

prompt. device might be something like /dev/hda or /dev/sda .The

basic fdisk commands you need are:

p print the partition table

n create a new partition

d delete a partition

q quit without saving changes

w write the new partition table and exit

Changes you make to the partition table do not take effect until you issue the write (w)

command. Here is a sample partition table:

Disk /dev/hdb: 64 heads, 63 sectors, 621 cylinders

Units = cylinders of 4032 * 512 bytes

 Device Boot Start End Blocks Id System

/dev/hdb1 * 1 184 370912+ 83 Linux

/dev/hdb2 185 368 370944 83 Linux

/dev/hdb3 369 552 370944 83 Linux

/dev/hdb4 553 621 139104 82 Linux swap

The first line shows the geometry of your hard drive. It may not be physically

accurate, but you can accept it as though it were. The hard drive in this example is

made of 32 double-sided platters with one head on each side (probably not true). Each

platter has 621 concentric tracks. A 3-dimensional track (the same track on all disks)

is called a cylinder. Each track is divided into 63 sectors. Each sector contains 512

bytes of data. Therefore the block size in the partition table is 64 heads * 63 sectors *

512 bytes er...divided by 1024. (See 4 for discussion on problems with this

calculation.) The start and end values are cylinders.

View All Mounts

http://www.tldp.org/HOWTO/Partition/recovering.html#BlockSize

Experiment No.05

Aim: Create user, group and assign various permissions to access a directory.

Tools Required: Linux operating system.

Objective: To learn creating a new user, group and assigning permissions to access a

directory.

Theory:

To add a new user account, you can run either of the following two commands
as root.

adduser [new_account]

useradd [new_account]

When a new user account is added to the system, the following operations are
performed.

1. His/her home directory is created (/home/username by default).
2. The following hidden files are copied into the user’s home directory, and will
be used to provide environment variables for his/her user session.

.bash_logout

.bash_profile

.bashrc

3. A mail spool is created for the user at /var/spool/mail/username.
4. A group is created and given the same name as the new user account.

Understanding /etc/passwd

The full account information is stored in the /etc/passwd file. This file contains a
record per system user account and has the following format (fields are
delimited by a colon).

[username]:[x]:[UID]:[GID]:[Comment]:[Home directory]:[Default shell]

 Fields [username] and [Comment] are self explanatory.

 The x in the second field indicates that the account is protected by a shadowed

password (in /etc/shadow), which is needed to logon as [username].

 The [UID] and [GID] fields are integers that represent the User IDentification and

the primary Group IDentification to which [username] belongs, respectively.

 The [Home directory] indicates the absolute path to [username]’s home directory,

and

 The [Default shell] is the shell that will be made available to this user when he or

she logins the system.

Understanding /etc/group

Group information is stored in the /etc/group file. Each record has the following
format.

[Group name]:[Group password]:[GID]:[Group members]

 [Group name] is the name of group.

 An x in [Group password] indicates group passwords are not being used.

 [GID]: same as in /etc/passwd.

 [Group members]: a comma separated list of users who are members of [Group

name].

Add User Accounts

After adding an account, you can edit the following information (to name a few
fields) using the usermod command, whose basic syntax of usermod is as
follows.

https://www.tecmint.com/wp-content/uploads/2014/10/add-user-accounts.png

usermod [options] [username]

Setting the expiry date for an account

Use the –expiredate flag followed by a date in YYYY-MM-DD format.

usermod --expiredate 2014-10-30 tecmint

Adding the user to supplementary groups

Use the combined -aG, or –append –groups options, followed by a comma
separated list of groups.

usermod --append --groups root,users tecmint

Changing the default location of the user’s home directory

Use the -d, or –home options, followed by the absolute path to the new home
directory.

usermod --home /tmp tecmint

Changing the shell the user will use by default

Use –shell, followed by the path to the new shell.

usermod --shell /bin/sh tecmint

Displaying the groups an user is a member of

groups tecmint

id tecmint

there are Three basic file/directory operations that a user/group/other users can perform on the files and

directories.

 Read (r): Permission to read the contents of the file/directory. In case of directories, a person can
view all the files and sub-directories belonging to the directory.

 Write (w): Permission to modify the contents of the file/directory. In case of directories, a person
can create a file or sub-directory in that directory.

 Execute (x): Permission to execute a file as a script/program. Executing a directory! Well, it does
not make any sense. In case of directories, a person can enter that directory. In order to

use ls and cd commands in /bin directory, a user should have Execute permissions.

CHMOD assigns numeric values to the Read, Write and Execute permissions which are as follows:

 Read : 4

 Write : 2

 Execute : 1

 So, the permissions associated with any file/directory in Linux have a 3x3 format i.e. Three types of

permissions (Read, Write and Execute) that are available for three types of users (Owner, Group and

Other).

http://2.bp.blogspot.com/-M-eIScRa36c/Ui4Y1oulKuI/AAAAAAAAAzU/Ojcb118eUoQ/s1600/chmod3.png

 To observe this, just enter ls –l command that displays 9 characters for every file/directory

representing the permissions for all the three types of users.

For Example:

In above output,

 Owner (mandar) has Read + Write + Execute permissions.

 Group has Read permissions.

 Others have Read permissions.

Changing Fil/Directory Permissions with CHMOD

To change the permissions associated with files and directories, you may either use Octal

Representation (using numeric) or Symbolic Representation (using alphabets). We will restrict this part of

our discussion up to the use of octal representation for changing files and directories permissions.

So, in octal representation of the permissions:

 First digit is for Owner

 Second digit is for Group

 Third digit is for Others
As an example, we have seen in our one of the previous articles- Getting Started with Linux Shell

Scripting Language, we have used a command as chmod 744 helloworld.sh. Indirectly, we have

given Read + Write + Execute (4+2+1) permissions to the Owner, Read (4) permission to the group and

Read (4) permission to the others.

http://www.yourownlinux.com/2013/08/getting-started-linux-shell-scripting.html
http://www.yourownlinux.com/2013/08/getting-started-linux-shell-scripting.html
http://2.bp.blogspot.com/-V2eWUJugBJ0/Ui4Y1TJ45aI/AAAAAAAAAzQ/gwxcb-GlTGA/s1600/chmod4.png
http://2.bp.blogspot.com/-xbBX0UQnhuU/Ui4W7IRl8bI/AAAAAAAAAy8/WLvD1NEru3g/s1600/chmod1.png

Now, if we wish to give Read + Write (4+2) permissions to the owner, Read (4) permissions to the group

and others, then we need to enter following command:

chmod 644 <file_name>

Another example, to give Read + Execute permission (4 + 1 = 5) to user and no permission (0) to group,

and Write (2) permission to others, enter following command:

chmod 502 <file_name>

What is

UMASK, along with default permission of file/directory, is responsible for determining the final value of the

default permission of a file/directory. The default permission for a file is 777 and for a directory, it is 666.

From these default permissions, the umask value is subtracted to get the final default permission for

newly created files or directory. The default value of umask is 022.

Final default permissions for file and directories are determined as follows:

 Default file permission: 666

 Default directory permission: 777

 Default umask : 022

 Final default file permission: 644

 Final default directory permission: 755
You may change the umask to an appropriate value based on your purpose. For example, if you wish no

one but the owner can do anything with the file/directory then you can set umask as 0077.

umask 0077

After this action, when you make a new file/directory, the permissions associated with them will be as

shown below:

Symbolic Representation

The symbolic representation used for three different types of users is as follows:

 u is used for user/owner

 g us used for group

 o is used for others

Usage of Symbolic Representation

1. Adding Single Permission

To change single permission of a specific set of users (owner, group or others), we can use '+' symbol to

add a permission.

Syntax: chmod <user>+<permission> <file_name>

Example: chmod u+x my_file

Using above command, we can add Execute permission to the owner of the file.

2. Adding Multiple Permissions

This is similar to command explained above, you just need to separate those multiple permissions with a

comma (,).

Syntax: chmod <user>+<permission>,<user>+<permission> <file_name>

Example: chmod g+x,o+x my_file

Using above command, we can add Execute permissions to the group and other users of the file.

3. Removing a Permission

Removing a permission is as easy as adding a permission, just remember to use '-' symbol instead of '+'.

Syntax: chmod <user>-<permission> <file_name>

Example: chmod o-x my_file

http://1.bp.blogspot.com/-bX2XuzKLFbA/Ui4W-2W7D7I/AAAAAAAAAzE/ZcYKy2U8jNg/s1600/chmod2.png

Above command removes Execute permission from the other users of the file.

4. Making the Changes for All

In case we add or remove some permissions for all the users (owner, group and others), we can use a

notation 'a' which denotes "All users".

Syntax: chmod a<+ or -><permission> <file_name>

Example: chmod a+x my_file

Above command will add Execute permission to all the users.

5. Copying the Permissions

If we wish to make permissions of two files/directories same, we can do it using reference option.

Consider that, we want to apply permissions of myfile1 to some other file called myfile2, then use

following command:

Example: chmod --reference=myfile1 myfile2

6. Applying Changes to All the Content of a Directory

If we want to apply some specific changes to all the files inside a directory, we can make use of option -R

denoting that the operation is recursive.

Syntax: chmod -R <directory_name>/

That's enough for this article. In this article, I tried to cover the basics of files and directory permissions

and the fundamental use of CHMOD command that helps us change those permissions associated with

files and directories.

Conclusion: Hence we have implemented creating user, group and assigning permissions to access a

directory.

Experiment No.06

Aim: Share a directory in LAN using SMB.

Tools Required: Linux operating system, SMB server.

Objective: To learn how to share a directory in LAN using SMB.

Theory:

All commands must be done as root (precede each command with 'sudo' or use 'sudo su').
1. Install Samba

1. sudo apt-get update

2. sudo apt-get install samba

2. Set a password for your user in Samba

1. sudo smbpasswd -a <user_name>

1. Note: Samba uses a separate set of passwords than the standard

Linux system accounts (stored in /etc/samba/smbpasswd), so

you'll need to create a Samba password for yourself. This

tutorial implies that you will use your own user and it does

not cover situations involving other users passwords, groups,

etc...

Tip1: Use the password for your own user to facilitate.

Tip2: Remember that your user must have permission to write and

edit the folder you want to share.

Eg.:

sudo chown <user_name> /var/opt/blah/blahblah

sudo chown :<user_name> /var/opt/blah/blahblah

Tip3: If you're using another user than your own, it needs to

exist in your system beforehand, you can create it without a

shell access using the following command :

sudo useradd USERNAME --shell /bin/false

You can also hide the user on the login screen by adjusting

lightdm's configuration, in /etc/lightdm/users.conf add the

newly created user to the line :

hidden-users=

3. Create a directory to be shared

mkdir /home/<user_name>/<folder_name>

4. Make a safe backup copy of the original smb.conf file to your home folder, in case you make an error

sudo cp /etc/samba/smb.conf ~

5. Edit the file "/etc/samba/smb.conf"

sudo nano /etc/samba/smb.conf

1. Once "smb.conf" has loaded, add this to the very end of the file:

2.

3. [<folder_name>]

4. path = /home/<user_name>/<folder_name>

5. valid users = <user_name>

6. read only = no

Tip: There Should be in the spaces between the lines, and note que

also there should be a single space both before and after each of

the equal signs.

6. Restart the samba:

sudo service smbd restart

7. Once Samba has restarted, use this command to check your smb.conf for any syntax errors

testparm

8. To access your network share

9. sudo apt-get install smbclient

10. # List all shares:

11. smbclient -L //<HOST_IP_OR_NAME>/<folder_name> -U <user>

12. # connect:

 smbclient //<HOST_IP_OR_NAME>/<folder_name> -U <user>

To access your network share use your username (<user_name>) and password through the path

"smb://<HOST_IP_OR_NAME>/<folder_name>/" (Linux users) or

"\\<HOST_IP_OR_NAME>\<folder_name>\" (Windows users). Note that "<folder_name>" value is passed

in "[<folder_name>]", in other words, the share name you entered in "/etc/samba/smb.conf".

1. Note: The default user group of samba is "WORKGROUP".

Conclusion: Hence we have implemented how to share a directory using SMB.

Experiment No.07

Aim: Write a shell script program input-output statements and loops.

Tools required: Linux operating system.

Objective: To learn usage of input-output statements and loops in shell script.

!/bin/bash

echo "enter a number"

read num

fact=1

while [$num -ge 1]

do

fact=`expr $fact* $num`

num=’expr $num – 1’

done

echo "factorial of $n is $fact"

Output:

enter a number

4

factorial 0f 4 is 24

 total
characters : 63
words: 12
lines : 3

Conclusion: Hence we have implemented shell script for input-output statements and

loops.

Experiment No.08

Aim: Write a shell script program using array & case statement.

Tools Required: Linux operating system.

Objective: To learn using arrays and case statement in shell script.

Theory:

#!/bin/sh

option="${1}"

case ${option} in

 -f) FILE="${2}"

 echo "File name is $FILE"

 ;;

 -d) DIR="${2}"

 echo "Dir name is $DIR"

 ;;

 *)

 echo "`basename ${0}`:usage: [-f file] | [-d directory]"

 exit 1 # Command to come out of the program with status 1

 ;;

esac

Output:

$./test.sh
test.sh: usage: [-f filename] | [-d directory]
$./test.sh -f index.htm
$ vi test.sh
$./test.sh -f index.htm
File name is index.htm
$./test.sh -d unix
Dir name is unix

Conclusion: Hence we have implemented array and case statement in shell script.

Experiment No.09

Aim: Use of various text processing tools: grep & sed.

Tools Required: Linux operating system.

Objective: To learn text processing using grep and sed tools.

Theory:

About grep

grep, which stands for "global regular expression print," processes

text line by line and prints any lines which match a specified pattern.

grep syntax

grep [OPTIONS] PATTERN [FILE...]

Overview

Grep is a powerful tool for matching a regular expression against text in a

file, multiple files, or a stream of input. It searches for the PATTERN of text

that you specify on the command line, and outputs the results for you.

General Options

--help Print a help message briefly summarizing command-line options, and exit.

-V, --version Print the version number of grep, and exit.

Match Selection Options

-E, --extended-

regexp

Interpret PATTERN as an extended regular expression (see Basic vs. Extended Regular Expressions).

https://www.computerhope.com/jargon/r/regex.htm
https://www.computerhope.com/jargon/c/commandi.htm
https://www.computerhope.com/unix/ugrep.htm#Extended-Regexp

-F, --fixed-strings Interpret PATTERN as a list of fixed strings, separated by newlines, any of which is to be matched.

-G, --basic-regexp Interpret PATTERN as a basic regular expression (see Basic vs. Extended Regular Expressions). This is the default option

when running grep.

-P, --perl-regexp Interpret PATTERN as a Perl regular expression. This functionality is still experimental, and may produce warning

messages.

Matching Control Options

-e PATTERN, --

regexp=PATTERN

Use PATTERN as the pattern to match. This can be used to specify multiple search patterns, or to protect a pattern

beginning with a dash (-).

-f FILE, --file=FILE Obtain patterns from FILE, one per line.

-i, --ignore-case Ignore case distinctions in both the PATTERN and the input files.

-v, --invert-match Invert the sense of matching, to select non-matching lines.

-w, --word-regexp Select only those lines containing matches that form whole words. The test is that the matching substring must either be

at the beginning of the line, or preceded by a non-word constituent character. Or, it must be either at the end of the line

or followed by a non-word constituent character. Word-constituent characters are letters, digits, and underscores.

-x, --line-regexp Select only matches that exactly match the whole line.

-y The same as -i.

About sed

sed, short for "stream editor", allows you to filter and transform text.

Description

sed is a stream editor. A stream editor is used to perform basic text

transformations on an input stream (a file, or input from a pipeline). While in

some ways similar to an editor which permits scripted edits (such

as ed), sed works by making only one pass over the input(s), and is

https://www.computerhope.com/jargon/n/newline.htm
https://www.computerhope.com/unix/ugrep.htm#Extended-Regexp
https://www.computerhope.com/jargon/p/perl.htm
https://www.computerhope.com/jargon/f/filter.htm
https://www.computerhope.com/jargon/t/text.htm
https://www.computerhope.com/jargon/p/pipe.htm
https://www.computerhope.com/jargon/s/script.htm
https://www.computerhope.com/unix/ued.htm

consequently more efficient. But it is sed's ability to filter text in a pipeline

which particularly distinguishes it from other types of editors.

sed syntax

sed OPTIONS... [SCRIPT] [INPUTFILE...]

If you do not specify INPUTFILE, or if INPUTFILE is "-", sed filters the

contents of the standard input. The script is actually the first non-

option parameter, which sed specially considers a script and not an input file

if and only if none of the other options specifies a script to be executed (that

is, if neither of the -e and -f options is specified).

Options

-n, --quiet, --silent Suppress automatic printing of pattern space.

-e script, --expression=script Add the script script to the commands to be executed.

-f script-file, --file=script-file Add the contents of script-file to the commands to be executed.

--follow-symlinks Follow symlinks when processing in place.

-i[SUFFIX], --in-place[=SUFFIX] Edit files in place (this makes a backup with file extension SUFFIX, if SUFFIX is supplied).

-l N, --line-length=N Specify the desired line-wrap length, N, for the "l" command.

--POSIX Disable all GNU extensions.

-r, --regexp-extended Use extended regular expressions in the script.

-s, --separate Consider files as separate rather than as a single continuous long stream.

-u, --unbuffered Load minimal amounts of data from the input files and flush the output buffers more often.

--help Display a help message, and exit.

--version Output version information, and exit.

https://www.computerhope.com/jargon/s/stdin.htm
https://www.computerhope.com/jargon/s/script.htm
https://www.computerhope.com/jargon/p/paramete.htm
https://www.computerhope.com/jargon/e/execute.htm
https://www.computerhope.com/jargon/s/symblink.htm
https://www.computerhope.com/jargon/f/fileext.htm
https://www.computerhope.com/jargon/g/gnu.htm
https://www.computerhope.com/jargon/r/regex.htm
https://www.computerhope.com/jargon/b/buffer.htm

About sed Programs

A sed program consists of one or more sed commands, passed in by one or

more of the -e, -f, --expression, and --file options, or the first non-option

argument if none of these options are used. This documentation frequently

refers to "the" sed script; this should be understood to mean the in-

order catenation of all of the scripts and script-files passed in.

Commands within a script or script-file can be separated by semicolons (";")

or newlines(ASCII code 10). Some commands, due to their syntax, cannot

be followed by semicolons working as command separators and thus should

be terminated with newlines or be placed at the end of a script or script-file.

Commands can also be preceded with optional non-

significant whitespace characters.

Each sed command consists of an optional address or address range (for

instance, line numbers specifying what part of the file to operate on;

see Selecting Lines for details), followed by a one-character command name

and any additional command-specific code.

How sed Works

sed maintains two data buffers: the active pattern space, and the

auxiliary hold space. Both are initially empty.

sed operates by performing the following cycle on each line of input:

first, sed reads one line from the input stream, removes any trailing

newline, and places it in the pattern space. Then commands are executed;

each command can have an address associated to it: addresses are a kind of

condition code, and a command is only executed if the condition is verified

before the command is to be executed.

When the end of the script is reached, unless the -n option is in use, the

contents of pattern space are printed out to the output stream, adding back

the trailing newline if it was removed. Then the next cycle starts for the next

input line.

Unless special commands (like ‘D’) are used, the pattern space is deleted

https://www.computerhope.com/jargon/c/concaten.htm
https://www.computerhope.com/jargon/n/newline.htm
https://www.computerhope.com/jargon/a/ascii.htm
https://www.computerhope.com/jargon/s/syntax.htm
https://www.computerhope.com/jargon/w/whitspac.htm
https://www.computerhope.com/jargon/c/charact.htm
https://www.computerhope.com/unix/used.htm#Selecting-Lines-With-sed

between two cycles. The hold space, on the other hand, keeps its data

between cycles (see commands ‘h’, ‘H’, ‘x’, ‘g’, ‘G’ to move data between

both buffers).

Selecting Lines With sed

Addresses in a sed script can be in any of the following forms:

number Specifying a line number will match only that line in the input. (Note that sed counts lines continuously across all input files

unless -i or -s options are specified.)

first~step This GNU extension of sed matches every step lines starting with line first. In particular, lines will be selected when there exists a

non-negative n such that the current line-number equals first + (n * step). Thus, to select the odd-numbered lines, one would

use 1~2; to pick every third line starting with the second, ‘2~3’ would be used; to pick every fifth line starting with the tenth, use

‘10~5’; and ‘50~0’ is just another way of saying 50.

$ This address matches the last line of the last file of input, or the last line of each file when the -i or -s options are specified.

/regexp/ This will select any line which matches the regular expression regexp. If regexp itself includes any "/" characters, each must

be escaped by a backslash ("\").

The empty regular expression ‘//’ repeats the last regular expression match (the same holds if the empty regular expression is

passed to the s command). Note that modifiers to regular expressions are evaluated when the regular expression is compiled, thus

it is invalid to specify them together with the empty regular expression.

\%regexp% (The % may be replaced by any other single character.)

This also matches the regular expression regexp, but allows one to use a different delimiter than "/". This option is particularly

useful if the regexp itself contains a lot of slashes, since it avoids the tedious escaping of every "/". If regexp itself includes any

delimiter characters, each must be escaped by a backslash ("\").

/regexp/I

\%regexp%I

The I modifier to regular-expression matching is a GNU extension which causes the regexp to be matched in a case-insensitive (as

opposed to case-sensitive) manner.

/regexp/M The M modifier to regular-expression matching is a GNU sed extension which causes ^ and $ to match respectively (in addition to

https://www.computerhope.com/jargon/e/esc.htm
https://www.computerhope.com/jargon/c/casesens.htm

\%regexp%M

the normal behavior) the empty stringafter a newline, and the empty string before a newline. There are special character sequences

("\`" and "\'") which always match the beginning or the end of the buffer. M stands for multi-line.

If no addresses are given, then all lines are matched; if one address is

given, then only lines matching that address are matched.

An address range can be specified by specifying two addresses separated by

a comma (","). An address range matches lines starting from where the first

address matches, and continues until the second address matches

(inclusively).

If the second address is a regexp, then checking for the ending match will

start with the line following the line which matched the first address: a range

will always span at least two lines (except of course if the input stream

ends).

If the second address is a number less than (or equal to) the line matching

the first address, then only the one line is matched.

GNU sed also supports some special two-address forms; all these are GNU

extensions:

0,/regexp/ A line number of 0 can be used in an address specification like 0,/regexp/ so that sedwill try to match regexp in the first input line too.

In other words, 0,/regexp/ is similar to 1,/regexp/, except that if addr2 matches the very first line of input the 0,/regexp/form will

consider it to end the range, whereas the 1,/regexp/ form will match the beginning of its range and hence make the range span up to the

second occurrence of the regular expression.

Note that this is the only place where the 0 address makes sense; there is no "0th" line, and commands which are given the 0 address in

any other way will give an error.

addr1,+N Matches addr1 and the N lines following addr1.

addr1,~N Matches addr1 and the lines following addr1 until the next line whose input line number is a multiple of N.

Appending the ! character to the end of an address specification negates the

sense of the match. That is, if the ! character follows an address range, then

only lines which do not match the address range will be selected. This also

works for singleton addresses, and, perhaps perversely, for the null address.

https://www.computerhope.com/jargon/s/string.htm
https://www.computerhope.com/jargon/n/null.htm

Overview Of Regular Expression Syntax

To know how to use sed, you should understand regular

expressions ("regexp" for short). A regular expression is a pattern that is

matched against a subject string from left to right. Most characters are

ordinary: they stand for themselves in a pattern, and match the

corresponding characters in the subject. As a simple example, the pattern

The quick brown fox

...matches a portion of a subject string that is identical to itself. The power

of regular expressions comes from the ability to include alternatives and

repetitions in the pattern. These are encoded in the pattern by the use of

special characters, which do not stand for themselves but instead are

interpreted in some special way. Here is a brief description of regular

expression syntax as used in sed:

char A single ordinary character matches itself.

* Matches a sequence of zero or more instances of matches for the preceding regular expression, which must be an ordinary

character, a special character preceded by "\", a ".", a grouped regexp (see below), or a bracket expression. As a GNU

extension, a postfixed regular expression can also be followed by "*"; for example, a** is equivalent to a*. POSIX 1003.1-

2001 says that * stands for itself when it appears at the start of a regular expression or subexpression, but many nonGNU

implementations do not support this, and portable scripts should instead use "*" in these contexts.

\+ Like *, but matches one or more. It is a GNU extension.

\? Like *, but only matches zero or one. It is a GNU extension.

\{i\} Like *, but matches exactly i sequences (i is a decimal integer; for compatibility, you should keep it between 0 and 255,

inclusive).

\{i,j\} Matches between i and j, inclusive, sequences.

\{i,\} Matches more than or equal to i sequences.

https://www.computerhope.com/jargon/r/regex.htm
https://www.computerhope.com/jargon/r/regex.htm
https://www.computerhope.com/jargon/r/regex.htm
https://www.computerhope.com/unix/used.htm#Grouped-Regexp
https://www.computerhope.com/jargon/p/posix.htm
https://www.computerhope.com/jargon/p/port.htm

\(regexp\) Groups the inner regexp as a whole; this is used to:

 Apply postfix operators, like \(abcd\)*: this will search for zero or more whole sequences of ‘abcd’,

while abcd*would search for ‘abc’ followed by zero or more occurrences of ‘d’. Note that support for \(abcd\)* is

required by POSIX 1003.1-2001, but many non-GNU implementations do not support it and hence it is not universally

portable.

 Use back references (see below).

. Matches any character, including a newline.

^ Matches the null string at beginning of the pattern space, i.e. what appears after the ^ must appear at the beginning of the

pattern space.

In most scripts, pattern space is initialized to the content of each line. So, it is a useful simplification to think of ^#include as

matching only lines where ‘#include’ is the first thing on line—if there are spaces before, for example, the match fails. This

simplification is valid as long as the original content of pattern space is not modified, for example with an s command.

^ acts as a special character only at the beginning of the regular expression or subexpression (that is, after \(or \|). Portable

scripts should avoid ^ at the beginning of a subexpression, though, as POSIX allows implementations that treat ^ as an

ordinary character in that context.

$ It is the same as ^, but refers to end of pattern space. $ also acts as a special character only at the end of the regular expression

or subexpression (that is, before \) or \|), and its use at the end of a subexpression is not portable.

[list]

[^list]

Matches any single character in list: for example, [aeiou] matches all vowels. A list may include sequences like char1-char2,

which matches any character between char1 and char2. For example, [b-e] matches any of the characters b, c, d, or e.

A leading ^ reverses the meaning of list, so that it matches any single character not in list. To include] in the list, make it the

first character (after the ^ if needed); to include - in the list, make it the first or last; to include ^ put it after the first character.

The characters $, *, ., [, and \ are normally not special within list. For example, [*] matches either ‘\’ or ‘*’, because the \ is not

special here. However, strings like [.ch.], [=a=], and [:space:] are special within list and represent collating symbols,

equivalence classes, and character classes, respectively, and [is therefore special within list when it is followed by ., =, or :.

Also, when not in POSIXLY_CORRECT mode, special escapes like \n and \tare recognized within list. See Escapes for more

information.

https://www.computerhope.com/unix/used.htm#Back-Reference
https://www.computerhope.com/unix/used.htm#Escapes

regexp1\|regexp2 Matches either regexp1 or regexp2. Use parentheses to use complex alternative regular expressions. The matching process tries

each alternative in turn, from left to right, and the first one that succeeds is used. This option is a GNU extension.

regexp1regexp2 Matches the concatenation of regexp1 and regexp2. Concatenation binds more tightly than \|, ^, and $, but less tightly than the

other regular expression operators.

\digit Matches the digit-th \(...\) parenthesized subexpression in the regular expression. This option is called a back reference.

Subexpressions are implicitly numbered by counting occurrences of \(left-to-right.

\n Matches the newline character.

\char Matches char, where char is one of $, *, ., [, \, or ^. Note that the only C-like backslash sequences that you can portably

assume to be interpreted are \n and \\; in particular \t is not portable, and matches a ‘t’ under most implementations of sed,

rather than a tab character.

Note that the regular expression matcher is greedy, i.e., matches are

attempted from left to right and, if two or more matches are possible

starting at the same character, it selects the longest.

For example:

abcdef Matches "abcdef".

a*b Matches zero or more "a" characters, followed by a single "b". For example, "b" or "aaaaaaab".

a\?b Matches "b" or "ab".

a\+b\+ Matches one or more "a" characters followed by one or more "b"s. "ab" is the shortest possible match, but other examples are

"aaaaab", "abbbbbb", or "aaaaaabbbbbbb".

.*or .\+ Either of these expressions will match all of the characters in a non-empty string, but only .* will match the empty string.

^main.*(.*) This matches a string starting with "main", followed by an opening and closing parenthesis. The "n", "(" and ")" need not be

adjacent.

^# This matches a string beginning with "#".

\\$ This matches a string ending with a single backslash. The regexp contains two backslashes for escaping.

\$ This matches a string consisting of a single dollar sign.

[a-zA-Z0-

9]

In the C locale, this matches any ASCII letters or digits.

[^ tab]\+ (Here tab stands for a single tab character.) This matches a string of one or more characters, none of which is a space or a tab.

Usually this means a word.

^\(.*\)\n\1$ This matches a string consisting of two equal substrings separated by a newline.

.\{9\}A$ This matches nine characters followed by an ‘A’.

^.\{15\}A This matches the start of a string that contains 16 characters, the last of which is an ‘A’.

Conclusion: Hence we have implemented text tools- grep and sed.

https://www.computerhope.com/jargon/t/tab.htm

Experiment No.10

Aim: Write a program in AWK using loops.

Tools Required: Linux operating system.

Objective: To learn how to create AWK program and awk program using loop.

Theory:

$ awk 'BEGIN {

 sum = 0; for (i = 0; i < 20; ++i) {

 sum += i; if (sum > 50) exit(10); else print "Sum =", sum

 }

}'

Output:

Sum = 0
Sum = 1
Sum = 3
Sum = 6
Sum = 10
Sum = 15
Sum = 21
Sum = 28
Sum = 36
Sum = 45

Conclusion: Hence we have implemented awk program using loop.

