
1

1

TPCT’s

College of Engineering, Osmanabad

Laboratory Manual

Advanced Processors & Microcontrollers

For

Third Year Students

 Manual Prepared by

Prof.L.M.Deshpande

Author COE, Osmanabad

2

2

 TPCT’s

 College of Engineering
Solapur Road, Osmanabad

Department of Electronics &Telecommunication

Vision of the Department:

To be recognized by the society at large as an excellent department offering quality higher
education in the Electronics & Telecommunication Engineering field with research focus
catering to the needs of the public ind being in tune with the advancing technological
revolution.

Mission of the Department:

To achieve the vision the department will

 Establish a unique learning environment to enable the student’s face the

challenges of the Electronics & Telecommunication Engineering field.

 Promote the establishment of centers of excellence in technology areas to

nurture the spirit of innovation and creativity among the faculty & students.

 Provide ethical & value based education by promoting activities addressing

the needs of the society.

 Enable the students to develop skill to solve complete technological

problems of current times and also to provide a framework for promoting

collaborative and multidisciplinary activities.

3

3

College of Engineering

Technical Document

This technical document is a series of Laboratory manuals of Electronics and Telecommunication

Department and is a certified document of College of Engineering, Osmanabad. The care has been

taken to make the document error-free. But still if any error is found. Kindly bring it to the notice of

subject teacher and HOD.

Recommended by,

HOD

Approved by,

Principal

Copies:

1. Departmental Library
2. Laboratory
3. HOD
4. Principal

4

4

FOREWORD

It is my great pleasure to present this laboratory manual for Third year engineering Students for the
subject of Advanced Processors & Microcontrollers ,keeping in view the vast coverage required
for visualization of concepts of Different aspects of the Processors.

As a student, many of you may be wondering with some of the questions in your mind

regarding the subject and exactly what has been tried is to answer through this manual.

Faculty members are also advised that covering these aspects in initial stage itself, will greatly
relived them in future as much of the load will be taken care by the enthusiasm energies of the
students once they are conceptually clear.

H.O.D.

1

1

LABORATORY MANUAL CONTENTS

This manual is intended for the Third year students of Electronics & Telecommunication
engineering branch in the subject of Advanced Processors & Microcontrollers . This manual
typically contains practical/Lab Sessions related to Advanced Processors & Microcontrollers
covering various aspects related to the subject to enhance understanding.

Students are advised to thoroughly go through this manual rather than only topics mentioned in the

syllabus as practical aspects are the key to understanding and conceptual visualization of

theoretical aspects covered in the books.

Prof.L.M.Deshpande

2

2

SUBJECT INDEX

1. Do’s and Don’ts in the laboratory

2. Pre-lab Requisite.

3. Lab Experiments:

Experiments based on 8086 processor
1. Addition of two sixteen bit numbers
2. To find the factorial of a given number

3. To perform : String data transfer

4. Interfacing stepper motor control to 8086 microprocessor

5. Interfacing Analog to Digital Converter to 8086 microprocessor

Experiment based on 8051 Microcontroller

6. Transfer of block of data from internal RAM to External RAM

7. Division of two 8 bit numbers

8. Program to read the data on port 1 and send it to port 2

9. Generation of square wave using Timer

10. Serial data transfer using 8051 sreial port.

4. Appendix

5. Quiz on the subject

6. Conduction of Viva-Voce Examinations

7. Evaluation and Marking System

3

3

DOs and DON Ts in Laboratory:

1. Do not handle any equipment before reading the instructions/Instruction manuals
2. Observe type of sockets of equipment power to avoid mechanical damage

3. Do not forcefully place connectors to avoid the damage
4. Strictly observe the instructions given by the teacher/Lab Instructor
5. Reset the trainer before the peripheral card is connected.
6. Check the proper connection of the peripheral card before running the programs
7.PC should be properly shut down before power supply is switched off.

Instruction for Laboratory Teachers::

1. Submission related to whatever lab work has been completed should be done during the next lab
session.

2. The promptness of submission should be encouraged by way of marking and evaluation patterns
that will benefit the sincere students.

4

4

Pre-lab Requisite.

EXECUTION OF USER PROGRAM ON AT 8086 TRAINER KIT

Execution procedure

In AT-86 system user can execute the program by folloeing the following steps.

1. First of all user should ready with the hex code of the program.

2. After completing the Installation procedure means displaying the power on

prompt on the LCD, Press any hex key then system will enter in to the address

set mode.

3. Enter the starting address of your program from 8400 onwards.

4. Press NEXT key then system will enter into the data set mode.

5. Here feed your data, use NEXT key to enter the data in the next location.

6. After feeding if you want to check the data use PREV/NEXT keys.

7. After checking the code either you press RESET followed by GO or GO key

directly.

8. Then system will ask for the execution starting address, Enter the program

address from where execution should start then press NEXT key.

9. Then ‘ Executing…. ‘ Message will appear and Program will be executed.

10. Then check the result of the program.

5

5

EXPERIMENT NO: 01
ADDITION OF TWO SIXTEEN BIT NUMBERS

Aim: Addition of two sixteen bit numbers stored in memory locations. Result of sixteen bit to be
stored in memory location.

Apparatus/software:

1. 8086 micro processor kit
2. Desktop Computer

Objective: To study of different Assembler directives & Data transfer instruction of 8086 Processor.

Theory: Description of some Assembler Directives.

ASSUME Directive - The ASSUME directive is used to tell the assembler that the name of the logical
segment should be used for a specified segment. The 8086 works directly with only 4 physical
segments: a Code segment, a data segment, a stack segment, and an extra segment.

 Example: ASUME CS:CODE ;This tells the assembler that the logical segment named CODE contains
the instruction statements for the program and should be treated as a code segment.

ENDS - This ENDS directive is used with name of the segment to indicate the end of that logic
segment.

EQU - This EQU directive is used to give a name to some value or to a symbol. Each time the
assembler finds the name in the program, it will replace the name with the value or symbol you
given to that name.

END - END directive is placed after the last statement of a program to tell the assembler that this is
the end of the program module. The assembler will ignore any statement after an END directive.

Data Transfer Instructions MOV Des, Src:

Src operand can be register, memory location or immediate operand.
Des can be register or memory operand.
Both Src and Des cannot be memory location at the same time.

E.g.: MOV CX, 037A H
 MOV AL, BL
 MOV BX, [0301 H]

Program:

CODE SEGMENT
 ASSUME CS: CODE, DS: CODE, ES: CODE, SS: CODE
 RSTINT EQU 03H
 ADR1 EQU 8500H ; Operand 1 address
 ADR2 EQU 8502H ; Operand 2 address
 ADR3 EQU 8504H ; Result address
 ORG 0400H

6

6

 START :
 MOV BX,ADR1 ;Load BX with operand1 address
 MOV AX,[BX] ;Load AX with operand1
 MOV BX,ADR2 ;Load BX with operand2 address
 ADD AX,[BX] ;Add operand2 to AX
 MOV BX,ADR3 ;Load BX with Result address
 MOV [BX],AX ;Move the result to Result address
 INT RSTINT ;Reset the system
 END START

CODE ENDS
END

Observation Table:

ADDRESS 8500H 8502H 8504H
CONTENTS

 Conclusion: The addition of two 16 numbers is done .The result is found to be as expected.

Program for practice: Addition of two eight bit numbers stored in memory locations. Result of

sixteen bit to be stored in memory location.

7

7

 EXPERIMENT NO: 02
FACTORIAL OF NUMBER

Aim: Find the factorial of a given number. Store the result in memory location.

Apparatus/software:

1. 8086 micro processor kit/TASM (TURBO ASSEMBLER)
2. Desktop Computer

Objective: To study TASM (Turbo Assembler) & of different Arithmatic instruction of 8086
Processor.

Theory: Assembling the program using TASM

The assembler is used to convert the assembly language instructions to machine code. It is used
immediately after writing the Assembly language program. The assembler starts by checking the
syntax or validity of the structure of each instruction in the source file .if any errors are found, the
assemblers displays a report on these errors along with brief explanation of their nature. However
If the program does contain any errors ,the assembler produces an object file that has the same
name as the original file but with the “obj” extension
Linking the program:
The Linker is used convert the object file to an executable file. The executable file is the final set of
machine code instructions that can directly be executed by the microprocessor. It is the different
than the object file in the sense that it is self-contained and re-locatable. An object file may
represent one segment of a long program. This segment can not operate by itself, and must be
integrated with other object files representing the rest of the program ,in order to produce the final
self-contained executable file
Executing the program
The executable contains the machine language code .it can be loaded in the RAM and executed by
the microprocessor simply by typing, from the DOS prompt ,the name of the file followed by the
carriage Return Key (Enter Key). If the program produces an output on the screen or sequence of
control signals to control a piece of hard ware, the effect should be noticed almost
immediately.However, if the program manipulates data in memory, nothing would seem to have
happened as a result of executing the program.

Procedure to enter a program using TASM software
Start the PC

↓
Get the DOS command prompt

↓
Type CD\

↓
Ok

Display shows
↓

C :\> C:\
↓

C :\> CD TASM
↓

Press ENTER

8

8

↓
C: \TASM> EDIT FILENAME.ASM

Example edit abc.asm
↓

Press ENTER
↓

Then the display shows editor
↓

Type the asm program
↓

Then the save the program
↓

Exit from editor Using Alt+F keys
↓

Then Display shows C: \TASM>
↓

Enter the name TASM FILENAME.ASM
Example

↓
C: \TASM> TASM abc.asm

Then Display shows Errors,(0)Warnings(0)
If there is errors correct them

↓
Enter the name Tlink FILENAME.OBJ

Example
↓

C: \TASM> TLINK abc.obj
↓

Then the display shows
Turbo Link Version 3.0

↓
Enter the name TD FILENAME.EXE

Example
↓

C: \TASM> TD abc.exe
↓

Then the display shows
Program has no symbol table

Choose OK
↓

RUN the Program using F9 Key or Select the RUN Option
↓

See the result in in Registers /Memory locations

9

9

Program:

CODE SEGMENT
 ASSUME CS: CODE, DS: CODE, ES: CODE, SS: CODE
 RSTINT EQU 03H
 NUM EQU 0005H ; Given number
 ADR EQU 8500H ; Result address
 ORG 0400H
 START :
 MOV BX,ADR ;Load BX with Result address
 MOV CX,NUM ;Load CX with number
 MOV AX,CX ;Copy the number in to AX
 DEC CX ;Decrement CX
UP; MUL CX ;Multiply AX with CX
 LOOP UP ;Decrement CX,repeat the loop till CX is not zero
 MOV BX,ADR3 ;Load BX with Result address
 MOV [BX],AX ;Move the result to Result address
 INT RSTINT ;Reset the system
 END START

CODE ENDS
END

Observation Table:

ADDRESS 8500H
CONTENTS

Conclusion: The Factorial of a given number is found .The result is found to be as expected.

Program for practice: Find the factorial of a number stored in memory location.

1

1

Experiment No. 03
STRING DATA TRANSFER

Aim: Transfer the given Byte string from source location in Data segment to destination location in
Extar segment

Apparatus/software:

1. 8086 micro processor kit/TASM (TURBO ASSEMBLER)
2. Desktop Computer

Objective: To study the string related operations.

Theory:
String Manipulation Instructions A series of data byte or word available in memory at consecutive
locations, to be referred as Byte String or Word String. A String of characters may be located in
consecutive memory locations, where each character may be represented by its ASCII equivalent.

 The 8086 supports a set of more powerful instructions for string manipulations for referring to a
string, two parameters are required. I. Starting and End Address of the String. II. Length of the
String. The length of the string is usually stored as count in the CX register.The incrementing or
decrementing of the pointer, in string instructions, depends upon the Direction Flag (DF) Status. If it
is a Byte string operation, the index registers are updated by one. On the other hand, if it is a word
string operation, the index registers are updated by two.

MOVSB / MOVSW :Move String Byte or String Word Suppose a string of bytes stored in a set of
consecutive memory locations is to be moved to another set of destination locations.The starting
byte of source string is located in the memory location whose address may be computed using SI
(Source Index) and DS (Data Segment) contents. The starting address of the destination locations
where this string has to be relocated is given by DI (Destination Index) and ES (Extra Segment)
contents.

 CMPS : Compare String Byte or String Word The CMPS instruction can be used to compare two
strings of byte or words. The length of the string must be stored in the register CX. If both the byte
or word strings are equal, zero Flag is set. The REP instruction Prefix is used to repeat the operation
till CX (counter) becomes zero or the condition specified by the REP Prefix is False.

LODS : Load String Byte or String Word The LODS instruction loads the AL / AX register by the
content of a string pointed to by DS : SI register pair. The SI is modified automatically depending
upon DF, If it is a byte transfer (LODSB), the SI is modified by one and if it is a word transfer
(LODSW), the SI is modified by two. No other Flags are affected by this instruction.

 STOS : Store String Byte or String Word The STOS instruction Stores the AL / AX register contents to
a location in the string pointer by ES : DI register pair. The DI is modified accordingly, No Flags are
affected by this instruction.

2

2

Algorithm:

1: Load source string, length in location 2000H of DS
2. Load starting address of the source string 3000H in SI
3. Load starting address of the destination string 4000H in DI
4. Clear DF
5. Execute MOVSB instruction for count number of times
 using the prefix REP.
5. End of the program

Program:

 ASSUME CS:CODE, DS;DATA, ES:EXTRA
 DATA SEGMENT
 SOURCE EQU 3000H
 COUNT EQU 2000H
 DATA ENDS
 EXTRA SEGMENT
 DEST EQU 4000H
 EXTRA ENDS
 CODE SEGMENT
 START:
 START: MOV SI,COUNT
 MOV CL,[SI]
 MOV SI,SOURCE
 MOV DI,DEST
 CLD
 REP MOVSB
 INT 03H
 END START
 CODE ENDS
 END

Input:
Source String

Expected output:
Destination String

Address Data Address Data
DS:3000H 12H ES:4000H 12H
DS:3001H 56H ES:4001H 56H
DS:3002H 9AH ES:4002H 9AH
DS:3003H 0DEH ES:4003H 0DEH
DS:3004H 0ABH ES:4004H 0ABH

3

3

Observed result:

Conclusion: As expected the given string has been copied to the destination location.

Program for practice: Write & execute a program Word string transfer.

Destination String

Address Data
ES:4000H 12H
ES:4001H 56H
ES:4002H 9AH
ES:4003H 0DEH
ES:4004H 0ABH

4

4

Experiment no. 04
Stepper motor control

Aim: ALP in 8086 to rotate the stepper motor in clockwise directions and anti-clockwise direction
continuously, by interfacing stepper motor control module to 8086 microprocessor through
Intel8255 .

Apparatus:
 1. 8086 Microprocessor kit
 2. Stepper motor module
 3. Desktop Computer

Objective: To see the speed & direction control of stepper motor my means of 8086 processor
program.

Theory:
A stepper motor is an electric motor that rotates in discrete step increments. The movement of
each step is precise and repeatable; therefore the motor's position can be controlled precisely
without any feedback mechanism, as long as the motor is carefully sized to the application. This type
of control eliminates the need for expensive sensing and feedback devices such as optical encoders.
The position is known simply by keeping track of the input step pulses. It is one of the most versatile
forms of positioning systems. They are typically digitally controlled as part of an open loop system,
and are simpler and more rugged than closed loop servo systems. Industrial applications include
high speed pick and place equipment and multi-axis CNC machines, often directly driving lead
screws or ballscrews. In the field of optics they are frequently used in precision positioning
equipment such as linear actuators, linear stages, rotation stages, goniometers, and mirror mounts.
Other uses are in packaging machinery, and positioning of valve pilot stages for fluid control
systems. Commercially, stepper motors are used in floppy disk drives, flatbed scanners, computer
printers, plotters, slot machines, image scanners, compact disc drives and many more devices.
Coil Windings and Stepping Mechanism:

There are two common winding arrangements for the electromagnetic coils: bipolar and unipolar
(Fig 4). The described stepping sequence utilizes the bipolar winding. Each phase consists of a single
winding. By reversing the current in the windings, electromagnetic polarity is reversed. A unipolar
stepper motor has one winding with center tap per phase. Each section of windings is switched on
for each direction of magnetic field. Since in this arrangement a magnetic pole can be reversed
without switching the direction of current, the commutation circuit can be made very simple for
each winding.

5

5

Program:

 ASSUME CS:CODE,DS:CODE,SS:CODE,ES:CODE
 CMDB8255 EQU 27H ;Control register address
 PAB8255 EQU 21H ;Port A address
 PBB8255 EQU 23H ;Port B address
 PCB8255 EQU 25H ;Port C address
 ;CLOCK WISE 05H,06H,0AH,09H
 ;ANTI CLOCK WISE 09H,0AH,06H,05H

ORG 400H

CODE SEGMENT
 START

 MOV AL,80H ;Move control word 80H into AL
 OUT CMDB8255,AL ;Send AL contents into Cntrol register.
 MOV AL,0FFH ;Move FFH into AL
 OUT PAB8255,AL ;Send the AL contents to Port A
START: MOV AL,05H ;Move FFH into AL
 OUT PAB8255,AL ;Send the AL contents to Port A
 CALL DELAY ;Call delay subroutine.
 MOV AL,06H ;Move FFH into AL
 OUT PAB8255,AL ;Send the AL contents to Port A
 CALL DELAY ;Call delay subroutine.
 MOV AL,0AH ;Move FFH into AL
 OUT PAB8255,AL ;Send the AL contents to Port A
 CALL DELAY ;Call delay subroutine.
 MOV AL,09H ;Move FFH into AL
 OUT PAB8255,AL ;Send the AL contents to Port A
 CALL DELAY ;Call delay subroutine.
 JMP START ; Jump to START.

 DELAY:
 MOV CX,05FFH ; Load CX with 05FFH.
 LP: DEC CX ; Decrement CX by one.
 JZ EXT ; Jump to EXT if ZF=1.
 JMP LP ; Jump to LP.
 EXT: RET ; Return to main program
 END START
 CODE ENDS
 END

6

6

Circuit Diagram:

Observed Result: When windings are excited in proper manner, stepper motor rotated in clockwise
directions and anti-clockwise direction continuously,

Conclusion: The stepper motor is driven by the digital inputs and it controls the speed & the
direction of the motor.

Program for practice: Write a program to rotate the stepper motor by the displacement equal to ten
steps.

7

7

Experiment No.05
ANALOG TO Digital Converter

Aim: To write a program for conversion of analog data to digital output.

Apparatus:
1. 8086 Trainer.
2. A/D interface module
3. Desktop Computer

Objective: Interfacing an ADC & and acquiring the analog signal & observing the digital equivalent

Theory:

WORKING OF ANALOG TO DIGITAL CONVERTER CIRCUIT:

The working of the circuit starts with making ALE and OE pins high which are meant to choose the
channel and also enable output. 5 V was the default reference voltage and it can be altered by
feeding the voltage of our desire to the pins Vref+ and Vref-. The Channel selection should be done
by using the pin ADDA to ADDC pins and here in this circuit diagram input channel 1 was selected.
The below table will give the logic states of all pins and their respective channel selection.

Now the Analog signal is fed into the channel you selected and then the state of the pin START
should be made low from high to start for activation. And after the conversion the EOC pin goes high
and it indicates the conversion is over. The EOC pin retains it low state as soon the next pulse is
encountered. As you can see in the above circuit the EOC pin was connected to start pin which
triggers a chain reaction resulting in continuous conversion to take place.

 Finally we will get a 8 bit data from the pins OUT1 to OUT8 which can be used for further
processing and display. You can even connect the LED’s to these pins and visually view the output
binary data, Led On indicates binary 1 and off indicates binary 0 data.

http://gadgetronicx.com/wp-content/uploads/2015/03/channel-selection-300x219.jpg

8

8

Program:

 ASSUME CS:CODE,DS:CODE,SS:CODE,ES:CODE

 KBINT EQU 22H
 DISINT EQU 23H
 CMD8255B EQU 27H
 PAB8255 EQU 21H
 PBB8255 EQU 23H
 PCB8255 EQU 25H
 DSPBUF EQU 9E00H
CODE SEGMENT
 ORG 400H
 MOV AL,92H ; Initialize port A & B as
 OUT CMD8255B,AL ; I/p & C as o/p
LP2: MOV AL,07H
 OUT PCB8255,AL ; Select 7th channel
 OR AL,18H
 OUT PCB8255,AL ; Set start of conversion
 AND AL,0E7H ; Reset SOC bit(pulse)
 NOP
 OUT PCB8255,AL
 NOP
 NOP
LP1: IN AL,PBB8255 ; Wait for EOC(end of
 AND AL,01H ; conversion)
 JZ LP1
 IN AL,PCB8255
 OR AL,20H
 OUT PCB8255,AL ; Set output enable
 NOP
 NOP
 IN AL,PAB8255 ; Read ADC output
 MOV DL,AL ; Store temporarily in DL
 MOV SI,OFFSET RESMES+8000H
 MOV DI,DSPBUF ; Move result message
 MOV CX,08H ; into display buffer
 REPMOVSW

 MOV AL,DL
 MOV CL,04H ; Get the upper nibble
 SHR AL,CL
 CALL ASCII
 MOV DI,DSPBUF+0EH
 MOV [DI],AL

 MOV AL,DL
 AND AL,0FH
 CALL ASCII
 MOV DI,DSPBUF+0FH

9

9

 MOV [DI],AL
 INT DISINT
 JMP LP2 ; Be in an infinite loop
RESMES:
 DB 'Digital O/P : 00'
ASCII:
 ADD AL,30H ; If no. < 0AH,add 30H
 CMP AL,3AH
 JC RET1
 ADD AL,07H ; If no. >= 0AH,add 37H
RET1:
 RET

CODE ENDS
END

Circuit Diagram:

Observation Table:

Analog I/P (Volts)
Digital O/P(Hexadecimal)

Conclusion: The ADC converted the applied Analog I/P into Digital O/P & value of the O/P is equal
to the given I/P

Program for practice: Write program to save the displayed digital value in a memory location.

10

10

Experiment No.06
Block Transfer

Aim: Write a program to copy a block of 5 bytes of data from int RAM locations from address 35H to
ext RAM locations from address40 60H

Objective: To understand the memory organization of 8051 microcontroller.

Apparatus/software:

1. 8051 microcontroller kit/KEIL IDE software
2. Desktop Computer

Theory:

8051 Memory Organization

The 8051 microcontroller's memory is divided into Program Memory and Data Memory. Program
Memory (ROM) is used for permanent saving program being executed, while Data Memory (RAM) is
used for temporarily storing and keeping intermediate results and variables.

Program Memory (ROM)

Program Memory (ROM) is used for permanent saving program (CODE) being executed. The
memory is read only. Depending on the settings made in compiler, program memory may also used
to store a constant variables. The 8051 executes programs stored in program memory
only. code memory type specifier is used to refer to program memory.
8051 memory organization alows external program memory to be added.
How does the microcontroller handle external memory depends on the pin EA logical state.

Internal Data Memory

Up to 256 bytes of internal data memory are available depending on the 8051 derivative. Locations
available to the user occupy addressing space from 0 to 7Fh, i.e. first 128 registers and this part of
RAM is divided in several blocks. The first 128 bytes of internal data memory are both directly and
indirectly addressable. The upper 128 bytes of data memory (from 0x80 to 0xFF) can be addressed
only indirectly.

http://download.mikroe.com/documents/compilers/mikroc/8051/help/constants.htm
http://download.mikroe.com/documents/compilers/mikroc/8051/help/memory_type_specifiers.htm#code

11

11

External Data Memory

Access to external memory is slower than access to internal data memory. There may be up to 64K
Bytes of external data memory. Several 8051 devices provide on-chip XRAM space that is accessed
with the same instructions as the traditional external data space. This XRAM space is typically
enabled via proper setting of SFR register and overlaps the external memory space. Setting of that
register must be manualy done in code, before any access to external memory or XRAM space is
made.

Source block:[35H]= 12H
 [36H]= 54 H
 [37H]=56 H
 [38H]= 23 H
 [39H]= A6 H

Program:
 ORG 0000H

MOV R0,#35H ;R0 source pointer

MOV DPTR,#4060H ;DPTR as destination
 ; pointer
MOV R3,#05H ;R3 counter

BACK: MOV A,@R0 ;get a byte from source

MOVX @DPTR,A ;copy it to destination

INC R0 ;increment source
 ; pointer
INC DPTR ;increment destination
 ; pointer
DJNZ R3,BACK ;keep doing for ten

 ;bytesLP:
SJMP LP ; Be in the loop

 END

Observed result: Destination block: [4060H]= 12H
 [4061H]= 54 H
 [4062H]=56 H
 [4063H]= 23 H
 [4064H]= A6 H

Conclusion: The given block is successfully transferred to the specified destination.

Program for practice: Write & execute the program for block transfer from External program meory
to Register bank 1

12

12

Experiment No.07
Division of 8 bit numbers

Aim: Write a program for division of given 8 bit numbers .Store the quotient in R0 and reminder in
R1

Apparatus/software:
 1. 8051 microcontroller kit/KEIL IDE software

 2. Desktop Computer

Objective: To study & implementing the multiplication & division operations by 8051
microcontroller.

Theory:
Multiplication of unsigned numbers:
The 8051 supports byte-by-byte multiplication only. The bytes are assumed to be unsigned data.
The syntax is as follows:

In byte-by-byte multiplication, one of the operands must be in register A, and the second operand
must be in register B. After multiplication, the result is in the A and B registers; the lower byte is in
A, and the upper byte is in B. The following example multiplies 25H by 65H. The result is a 16-bit
data that is held by the A and B registers.

Division of unsigned numbers:
In the division of unsigned numbers, the 8051 supports byte over byte only. The syntax is as follows.

When dividing a byte by a byte, the numerator must be in register A and the denominator must be in
B. After the DIV instruction is performed, the quotient is in A and the remainder is in B. See the
following

13

13

 example.

Given 8 bit numbers: Dividend: 2B H

Diviser: 0A H

Expected Result: Quotient R0=04 H Reminders R1=03 H

Program:

 ORG 0000H

MOV A, #2B H ; load the Dividend into A
 MOV B, #0A H ; load the Divisor into B
DIV AB ; perform the division A / B
MOV R0, A ; save the Quotient in R0
MOV R1, B ; save the Reminder in R1

LP: SJMP LP ; Be in the loop
 END

Observed Result:

Quotient R0=04 H Reminders R1=03 H

Conclusion:Division operation is done & the results are found to be correct.

Program for practice: Write & execute the program for multiplication of two 8 bit numbers.

14

14

Experiment No.08
Data Monitoring

Aim: Write a program to read the data on port 1 and send it to port 2

Apparatus/software:
 1. 8051 microcontroller kit/KEIL IDE software

2. Desktop Computer

Objective: To study operation & applications of ports of 8051 microcontroller.

Theory:

8051 Microcontroller ports:

There are four ports P0, P1, P2 and P3 each use 8 pins, making them 8-bit ports. All the ports

upon RESET are configured as output, ready to be used as output ports. To use any of these ports as

an input port, it must be programmed.

Port 0: Port 0 occupies a total of 8 pins (pins 32-39) .It can be used for input or output. To use the

pins of port 0 as both input and output ports, each pin must be connected externally to a 10K ohm

pull-up resistor. This is due to the fact that P0 is an open drain, unlike P1, P2, and P3.Open drain is a

term used for MOS chips in the same way that open collector is used for TTL chips. With external

pull-up resistors connected upon reset, port 0 is configured as an output port.

Port 0 as Input : With resistors connected to port 0, in order to make it an input, the port must be

programmed by writing 1 to all the bits. In the following code, port 0 is configured first as an input

port by writing 1’s to it, and then data is received from the port and sent to P1.

Dual role of port 0: Port 0 is also designated as AD0-AD7, allowing it to be used for both address
and data. When connecting an 8051/31 to an external memory, port 0 provides both address and
data. The 8051 multiplexes address and data through port 0 to save pins.

Port 1: Port 1 occupies a total of 8 pins (pins 1 through 8). It can be used as input or output. In

contrast to port 0, this port does not need any pull-up resistors since it already has pull-up resistors

internally. Upon reset, Port 1 is configured as an output port.

Port 1 as input: To make port1 an input port, it must programmed as such by writing 1 to all its bits

Port 2 : Port 2 occupies a total of 8 pins (pins 21- 28). It can be used as input or output. Just like P1,

P2 does not need any pull-up resistors since it already has pull-up resistors internally. Upon

reset,Port 2 is configured as an output port.

Port 2 as input : To make port 2 an input, it must programmed as such by writing 1 to all its bits

15

15

Dual role of port 2 : Port 2 is also designed as A8-A15, indicating the dual function. Since an 8051 is
capable of accessing 64K bytes of external memory, it needs a path for the 16 bits of the address.
While P0 provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits A8-A15 of the
address. In other words, when 8031 is connected to external memory, P2 is used for the upper 8 bits
of the 16 bit address, and it cannot be used for I/O.

Port 3 : Port 3 occupies a total of 8 pins, pins 10 through 17. It can be used as input or output. P3
does not need any pull-up resistors, the same as P1 and P2 did not. Although port 3 is configured as
an output port upon reset. Port 3 has the additional function of providing some extremely important
signals such as interrupts

.

Program:

 ORG 0000H

 MOV A, #0FFH ; move FF H into A

 MOV P1, A ;program port 1 as input port by

 ; sending FF H to port 1

BACK: MOV A, P1 ;get data from Port 1

 MOV P2, A ;send it to port 2

 SJMP BACK ; keep doing it

 END

Observation: The data on the port 1 is read and sent to port 2

Conclusion: The status of the port 1 is monitored on port2 continuously

Program for practice: Write a program for monitoring the switch status connected to port 0.1 pin on
port 0.1 pin continuously.

16

16

Experiment No.09

Generation of square wave

Aim: Write a program to generate a square wave on p1.5 pin.Use TIMER 0 to generate delay

Apparatus/software:

1. 8051 microcontroller kit/KEIL IDE software
2. Desktop Computer
3.

Objective: Application of on chip Timer for generating square wave.

Theory:

Timers in 8051 Microcontroller: There are two 16-bit timers and counters in 8051 microcontroller:

timer 0 and timer 1. Both timers consist of 16-bit register in which the lower byte is stored in TL and

the higher byte is stored in TH. Timer can be used as a counter as well as for timing operation that

depends on the source of clock pulses to counters.

Timers and counters

Counters and Timers in 8051 microcontroller contain two special function registers: TMOD (Timer

Mode Register) and TCON (Timer Control Register), which are used for activating and

configuring timers and counters.

Timer Mode Control (TMOD): TMOD is an 8-bit register used for selecting timer or counter and

mode of timers. Lower 4-bits are used for control operation of timer 0 or counter0, and remaining 4-

bits are used for control operation of timer1 or counter1.This register is present in SFR register, the

address for SFR register is 89th.

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/wp-content/uploads/2014/05/3.jpg

17

17

Timer Mode Control (TMOD)

Gate: If the gate bit is set to ‘0’, then we can start and stop the “software” timer in the same way. If

the gate is set to ‘1’, then we can perform hardware timer.

C/T: If the C/T bit is ‘1’, then it is acting as a counter mode, and similarly when set C+

=/T bit is ‘0’; it is acting as a timer mode.

Mode Selection Bits

Mode select bits: The M1 and M0 are mode select bits, which are used to select the timer

operations. There are four modes to operate the timers.

Mode 0: This is a 13-bit mode that means the timer operation completes with “8192” pulses.

Mode 1: This is a16-bit mode, which means the timer operation completes with maximum clock

pulses that “65535”.

Mode 2: This mode is an 8-bit auto reload mode, which means the timer operation completes with

only “256” clock pulses.

Mode 3: This mode is a split-timer mode, which means the loading values in T0 and automatically

starts the T1.

Program:

ORG 0000H
 MOV TMOD,#01 ;Timer 0, mode 1(16-bit mode)
HERE: CPL P1.5 ;Toggle P1.5
 ACALL DELAY ;Call delay subroutine
 SJMP HERE ;Repeat the loop
DELAY: MOV TL0,#00H ;TL0=00H, the low byte

https://www.elprocus.com/wp-content/uploads/2014/05/4.jpg
https://www.elprocus.com/wp-content/uploads/2014/05/5.jpg

18

18

 MOV TH0,#0FFH ;TH0=FFH, the high byte
 SETB TR0 ;Start the timer 0
AGAIN: JNB TF0,AGAIN ;Monitor timer0 oerflow flag for 1
 CLR TF0 ;Clear timer0 oerflow flag
 RET ;Return to main program
 END
Observed result: As expected a square wave is generated on p1.5

Conclusion: The required delay is generated using Timer & square wave is generated.

Program for practice: Write & execute the program for square wave generation without using
Timer.

19

19

Experiment No.10
Data transmission using serial port

Aim:Write a program for the 8051 to transfer COE serially at 9600 baud rate.

Apparatus/software:

1. 8051 microcontroller kit/KEIL IDE software

Objective: To study the 8051 serial port operation

Theory:The 8051 Serial Port

 The 8051 includes an on-chip serial port that can be programmed to operate in one of four

ifferent modes and at a range of frequencies. In serial communication the data is rate is known
as the baud rate, which simply means the number of bits transmitted per second. In the serial
port modes that allow variable baud rates, this baud rate is set by timer 1.

The 8051 serial port is full duplex. In other words, it can transmit and receive data at the same time. The block
diagram above shows how this is achieved. If you look at the memory map you will notice at location 99H the serial
buffer special function register (SBUF). Unlike any other register in the 8051, SBUF is in fact two distinct registers -
the write-only register and the read-only register. Transmitted data is sent out from the write-only register while
received data is stored in the read-only register. There are two separate data lines, one for transmission (TXD) and
one for reception (RXD). Therefore, the serial port can be transmitting data down the TXD line while it is at the
same time receiving data on the RXD line.

http://www.edsim51.com/8051Notes/8051/dataMemory.html

20

20

The TXD line is pin 11 of the microcontroller (P3.1) while the RXD line is on pin 10 (P3.0). Therefore, external access
to the serial port is achieved by connecting to these pins. For example, if you wanted to connect a keyboard to the
serial port you would connect the transmit line of the keyboard to pin 10 of the 8051. If you wanted to connect a
display to the serial port you would connect the receive line of the display to pin 11 of the 8051. This is detailed in
the diagram below.

Transmitting and Receiving Data

Essentially, the job of the serial port is to change parallel data into serial data for transmission

and to change received serial data into parallel data for use within the microcontroller.

 Serial transmission is changing parallel data to serial data.

 Serial reception is changing serial data into parallel data.

 Both are achieved through the use of shift registers.

Mode 0

As detailed in the table above, mode 0 is simply a shift register. To put the serial port into mode

0 you clear both SM0 and SM1. The diagram below illustrates the serial port in mode 0.

21

21

As can be seen in the diagram above, the terms TXD and RXD are misleading in mode 0. TXD serves as the clock
while RXD is used for both receiving and transmitting data. In mode 0, the serial port is only half duplex; it cannot
transmit and receive data at the same time because the same line (RXD) is being used for both transmit and
receive.
The serial port in mode 0 is an example of synchronous communication; the clock signal is sent with the data on the
TXD line. TXD pulses at the same frequency as the machine cycle. In other words, TXD runs at 1/12th the frequency
of the system clock. If we are using a 12MHz system clock, then the frequency of TXD is 1MHz, which implies its
cycle length is 1us. Therefore, each bit is active on the RXD line for 1us. To shift the entire 8-bit word along RXD
takes 8us.

Program:

ORG 0000H
 MOV TMOD,#20H ;timer 1,mode 2
 MOV TH1,#0FDH ;9600 baud rate
 MOV SCON,#40H ;8-bit, 1 stop, REN enabled
 SETB TR1 ;start timer 1
 MOV A,#"M"
 CALL TRANS
 MOV A,#"."
 CALL TRANS
 MOV A,#"S"
 CALL TRANS

22

22

 MOV A,#"c"
 CALL TRANS
LOOP: SJMP LOOP

TRANS: MOV SBUF,A ;letter “A” to transfer
HERE: JNB TI,HERE ;wait for the last bit
 CLR TI ;clear TI for next char
 RET
 END

Observed result: The data is transferred to system console

Conclusion: The data transmission is carried out successfully through serial port of 80510 controllers.
Program for practice:

Program for practice: Write a program to send the message “COE OSMANABAD” continuously with baud
rate of 4800.

23

23

4. Quiz on the Subject

1.8086 is how many bit processors?
2. How many address lines 8086 processor has?
3. What is the function of Execution Unit?
4. What do you mean by memory segment?
5. Flag register of 8086 processor contains how many flags?
6. SP register contents represent what?
10. Physical address is of how many bits?
11. DAA stands for what?
12. How many segment registers 8086 processor has?
13. Name hardware interrupts of 8086 processor.
14. Assemble directive ENDS stands for?
15. How many port 8255 PPI can provide?
16.0808 is how many bit ADC?
17. How many ports lines are needed to interface Stepper Motor?
18. What is the use of Assembler ?
20. When we use the instruction MOVSB ?
21.80386 is how many bit processor?
22.2764 memory IC capacity is how much?
23. BHE stands for what?
24. Name the modes of 8086 operation.
25. In string operations which register is used to specify the string lenth ?
26. What do you mean by Microcontroller?
28.8051 is how many bit controller?
28. List some SFRs in 8051 microcontroller.
29. How much Program memeory can be externally interfaced to 8051?
30. How many ports 8051 has got internally?
31. What is the difference between Timer & Counter?
32. List External interrupts in 8051 microcontroller.
33. What is the role of SBUF register in serial communication.
34. How much internal Data memory 8051 has built in ?
35. A register bank contains how many registers?
36. Give the memory map of internal program memory of 8051 .
37. How many Timers the 8051 has in built?
38. How much Program memeory can be externally interfaced to 8051?
 a. 16KB b. 32KB c. 64KB d. 128KB
39. How many ports 8051 has got internally?
40. How many internal interrupts 8051 microcontroller has ?
41. SBUF register is related to which peripheral.
42. How much internal Data memory 8051 has built in ?
43. A register bank of 8051 contains how many registers?
44. Which register contains the flags in 8051 controller.
45. Which of the 8051 register is 16 bit length?

24

24

5. Conduction of VIVA-VOCE Examinations:

Teacher should conduct oral exams of the students with full preparation. Normally the objective

questions with guess are to be avoided. To make it meaningful, the questions should be such that depth

of the student in the subject is tested. Oral Exams are to be conducted in co-cordial situation. Teachers

taking oral exams should not have ill thoughts about each other & courtesies should be offered to each

other in case of opinion, which should be critically suppressed in front of the students.

6. Evaluation and marking system:

Basic honesty in the evaluation and marking system is essential and in the process impartial nature of the

evaluator is required in the exam system. It is a primary responsibility of the teacher to see that right

students who really put their effort & intelligence are correctly awarded.

The marking pattern should be justifiable to the students without any ambiguity and teacher should see

that students are faced with just circumstance.

